Particle multiplicity of unbiased gluon jets from e+ e- three jet events

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 23 (2002) 597-613, 2002.
Inspire Record 565517 DOI 10.17182/hepdata.49742

The charged particle multiplicities of two- and three-jet events from the reaction e+e- -> Z0 -> hadrons are measured for Z0 decays to light quark (uds) flavors. Using recent theoretical expressions to account for biases from event selection, results corresponding to unbiased gluon jets are extracted over a range of jet energies from about 11 to 30 GeV. We find consistency between these results and direct measurements of unbiased gluon jet multiplicity from upsilon and Z0 decays. The unbiased gluon jet data including the direct measurements are compared to corresponding results for quark jets. We perform fits based on analytic expressions for particle multiplicity in jets to determine the ratio r = Ng/Nq of multiplicities between gluon and quark jets as a function of energy. We also determine the ratio of slopes, r(1) = (dNg/dy)/(dNq/dy), and of curvatures, r(2) = (d2Ng/dy2)/(d2Nq/dy2), where y specifies the energy scale. At 30 GeV, we find r = 1.422 +/- 0.051, r(1) = 1.761 +/- 0.071 and r(2) = 1.98 +/- 0.13, where the uncertainties are the statistical and systematic terms added in quadrature. These results are in general agreement with theoretical predictions. In addition, we use the measurements of the energy dependence of Ng and Nq to determine an effective value of the ratio of QCD color factors, CA/CF. Our result, CA/CF = 2.23 +/- 0.14 (total), is consistent with the QCD value of 2.25.

4 data tables

Measurements of the mean charged particle multiplicity of biased two-jet uds flavour events from Z0 decays as a function of the transverse momentum cutoff PT(C=LU) used to separate two- and three-jet events.

Measurements of the mean charged particle multiplicity of three-jet uds flavour 'Y events' from Z0 decays, as a function of the angle THETA1 between the lowest two energy jets. The results for the quark jet scale SQRT(S(C=QQBAR)) and the gluon jet scales PT(C=LU) and PT(C=LE) are also given.

Measurements of the unbiased gluon multiplicity as a function of the energy scale Q=PT(C=LU). The corresponding bins of THETA1 in 'Y events' are also indicated.

More…

QCD studies with e+ e- annihilation data at 172-GeV to 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 185-210, 2000.
Inspire Record 513476 DOI 10.17182/hepdata.49000

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity <nch> and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, <nch> and xi_0 are consistent with previous determinations at sqrt{s}=MZ.

20 data tables

Distribution of Thrust.

Distribution of Thrust Major.

Distribution of Thrust Minor.

More…

QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

26 data tables

Determination of alpha_s.

Multiplicity and higher moments.

Thrust distribution.

More…

Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 388 (1996) 659-672, 1996.
Inspire Record 423486 DOI 10.17182/hepdata.47714

Gluon jets with about 39 GeV energy are identified in hadronic Z 0 decays by tagging two jets in the same hemisphere of an event as quark jets. Identifying the gluon jet to be all the particles observed in the hemisphere opposite to that containing the two tagged jets yields an inclusive gluon jet definition corresponding to that used in analytic calculations, allowing the first direct test of those calculations. In particular, this jet definition yields results which are only weakly dependent on a jet finding algorithm. We find r ch. =1.552±0.0041 ( stat ) ±0.061 ( syst. ) for the ratio of the mean charged particle multiplicity in gluon jets to that in light quark uds jets, where the uds jets are identified using an inclusive jet definition similar to that used for the gluon jets. Our result is in general agreement with the prediction of a recent analytic calculation which incorporates energy conservation into the parton shower branching processes, but is considerably smaller than analytic predictions which do not incorporate energy conservation.

2 data tables

Mean charged particle multiplicity in gluon jets.

Mean charged particle multiplicity in single hemisphere light quark jets.


QCD studies with e+ e- annihilation data at 130-GeV and 136-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 191-206, 1996.
Inspire Record 418007 DOI 10.17182/hepdata.47564

We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.

23 data tables

Determination of alpha_s.

Multiplicity and high moments.

Tmajor distribution.

More…

Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 55 (1992) 39-62, 1992.
Inspire Record 334954 DOI 10.17182/hepdata.14566

The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.

16 data tables

Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.

Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.

Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.

More…

Measurement of the inclusive production of neutral pions and charged particles on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 259 (1991) 199-208, 1991.
Inspire Record 314407 DOI 10.17182/hepdata.29468

We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.

6 data tables

No description provided.

Error is dominated by systematic uncertainties.

No description provided.

More…

Charged Particle Multiplicity Distributions in $e^+ e^-$ Annihilation at 29-{GeV}: A Comparison With Hadronic Data

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Z.Phys.C 35 (1987) 323, 1987.
Inspire Record 235873 DOI 10.17182/hepdata.15773

The charged particle multiplicity distributions for two-jet events ine+e− annihilation at 29 GeV have been measured using the High Resolution Spectrometer at PEP. A Poisson distribution describes the data for both the complete event and for the single jets. In addition, no correlation is observed between the multiplicities in the two jets of an event. For fixed values of the prong number of the complete event, the multiplicity sharing between the two jets is in good agreement with a binomial distribution. The rapidity gap distribution is exponential with a slope equal to the mean rapidity density. These observations, which are consistent with a picture of independent emission of single particles, are contrasted to the results from soft hadronic collisions and conclusions are drawn about the nature of clusters.

4 data tables

Charged Particle Multiplicity distributions for single jet and whole event from the two jet sample. The numerical values are given in the paper Derrick et al, PR D34 (86) 3304, and are coded in this database as (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1437> RED = 1437 </a>).

Single Jet Mean Multiplicities.

Total event charged multiplicities.

More…

Study of Quark Fragmentation in e+ e- Annihilation at 29-GeV: Charged Particle Multiplicity and Single Particle Rapidity Distributions

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Rev.D 34 (1986) 3304, 1986.
Inspire Record 18502 DOI 10.17182/hepdata.23443

This paper presents the charged-particle multiplicity distributions for e+e− annihilation at √s =29 GeV measured in the High Resolution Spectrometer. The data, which correspond to an integrated luminosity of 185 pb−1, were obtained at the SLAC e+e− storage ring PEP. The techniques used to correct the observed prong numbers are discussed. The multiplicity distribution of the charged particles has a mean value 〈n〉=12.87±0.03±0.30, a dispersion D2=3.67±0.02±0.18, and an f2 moment of 0.60±0.02±0.18. Results are also presented for a two-jet sample selected with low sphericity and aplanarity. The charged-particle distributions are almost Poissonian and narrower than have been reported by other e+e− experiments in this energy range. The mean multiplicity increases with the event sphericity, and for the sample of threefold-symmetric three-jet events, a value of 〈n〉=16.3±0.3±0.7 is found. No correlation is observed between the multiplicities in the two hemispheres when the events are divided into two jets by a plane perpendicular to the thrust axis. This result is in contrast with the situation in soft hadronic collisions, where a strong forward-backward correlation is measured. For the single jets, a mean multiplicity of 6.43±0.02±0.15 and a dispersion value of D2=2.55±0.02±0.13 are found. These values give further support to the idea of independent jet fragmentation. The multiplicity distributions are well fit by the negative-binomial distribution. The semi-inclusive rapidity distributions are presented. Comparisons are made to the measurements of charged-particle multiplicities in hadron-hadron and lepton-nucleon collisions.

13 data tables

Charged particle multiplicity distribution for the Inclusive Data Sample.

Charged particle multiplicity distribution for the Two Jet Data Sample.

Properties of multiplicity distributions for Inclusive Data Sample.

More…

Rapidity Dependence of the Charged Particle Multiplicity Distributions in e+ e- Annihilation at 29-GeV

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Lett.B 168 (1986) 299-304, 1986.
Inspire Record 17794 DOI 10.17182/hepdata.30277

The charged particle multiplicity distribution for e + e − annihilations at s = 29 GeV has been measured using the High Resolution Spectrometer at PEP. The multiplicity distribution, expressed as a function of the mean, shows KNO scaling when compared to e + e − data at other energies. Multiplicity distributions for particles selected in different central rapidity spans are presented. All of these are well presented by the Negative binomial distribution. As the rapidity span is narrowed, the distributions become broader and approach a constant value of the parameter k .

12 data tables

KNO charged multiplicity distributions for the Inclusive Data Sample. The numerical values are calculated from the multiplicity distributions given in Derrick et al., PR D34,3304.

Folded rapidity distribution measured along the thrust axis of the event. Errors are dominated by systematics. All charged particles are assigned the pion mass.

KNO charged multiplicity distribution for the Two Jet Data Sample. The numerical values are calculated from the multiplicity distributions given in Derrick et al., PR D34,3304.

More…