Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 97 (2018) 032006, 2018.
Inspire Record 1624692 DOI 10.17182/hepdata.83542

A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{\rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{\rm{hT}}^{2}$ region, i.e. $P_{\rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger $P_{\rm{hT}}^{2}$, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small $P_{\rm{hT}}^{2}$ to study the dependence of the average transverse momentum $\langle P_{\rm{hT}}^{2}\rangle$ on $x$, $Q^2$ and $z$. The power-law behaviour of the multiplicities at large $P_{\rm{hT}}^{2}$ is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.

162 data tables
More…

Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

90 data tables

Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

More…

Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

The COMPASS collaboration Adolph, C. ; Agarwala, J. ; Aghasyan, M. ; et al.
Phys.Lett.B 767 (2017) 133-141, 2017.
Inspire Record 1483098 DOI 10.17182/hepdata.77892

Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 < Q2 < 60 (GeV/c)^2 in the photon virtuality, 0.004 < x < 0.4, 0.1 < y < 0.7, 0.20 < z < 0.85, and W > 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.

2 data tables

Multiplicities of positively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{+}}$, as follows: $M^{K^{+}}$ = $M_{raw}^{K^{+}}$ * $\frac{\eta^{K^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{+}} } {DVM^{DIS} }$.

Multiplicities of negatively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{-}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{-}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{-}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{-}}$, as follows: $M^{K^{-}}$ = $M_{raw}^{K^{-}}$ * $\frac{\eta^{K^{-}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{-}} } {DVM^{DIS} }$.


Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target

The COMPASS collaboration Adolph, C. ; Agarwala, J. ; Aghasyan, M. ; et al.
Phys.Lett.B 764 (2017) 1-10, 2017.
Inspire Record 1444985 DOI 10.17182/hepdata.76800

Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the relative hadron energy $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ($^6$LiD). They cover the kinematic domain in the photon virtuality $Q^2$ > 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.

4 data tables

Multiplicities of positively charged pions from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{\pi^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the pion count, $DVM^{\pi^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the pion count, $\eta^{\pi^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{\pi^{+}}$, as follows: $M^{\pi^{+}}$ = $M_{raw}^{\pi^{+}}$ * $\frac{\eta^{\pi^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{\pi^{+}} } {DVM^{DIS} }$.

Multiplicities of negatively charged pions from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{\pi^{-}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the pion count, $DVM^{\pi^{-}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the pion count, $\eta^{\pi^{-}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{\pi^{-}}$, as follows: $M^{\pi^{-}}$ = $M_{raw}^{\pi^{-}}$ * $\frac{\eta^{\pi^{-}}} {\eta^{DIS}}$ * $\frac{ DVM^{\pi^{-}} } {DVM^{DIS} }$.

Multiplicities of unidentified positively charged hadrons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{h^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the hadron count, $DVM^{h^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the hadron count, $\eta^{h^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{h^{+}}$, as follows: $M^{h^{+}}$ = $M_{raw}^{h^{+}}$ * $\frac{\eta^{h^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{h^{+}} } {DVM^{DIS} }$.

More…

Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Eur.Phys.J.C 73 (2013) 2531, 2013.
Inspire Record 1236358 DOI 10.17182/hepdata.61432

Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\langle p_T^2 \rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\langle p_T^2 \rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\langle k_{\perp}^2 \rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.

48 data tables

PT dependences of the differential multiplicities for 0.0045 < x_Bjorken < 0.0060 and 1.00 < Q^2 < 1.25 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.00 < Q^2 < 1.30 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.30 < Q^2 < 1.70 GeV^2 for Positive hadrons.

More…

Measurement of charged particle multiplicities in $pp$ collisions at ${\sqrt{s} =7}$TeV in the forward region

The LHCb collaboration Aaij, R. ; Abellan Beteta, C. ; Adeva, B. ; et al.
Eur.Phys.J.C 72 (2012) 1947, 2012.
Inspire Record 1082369 DOI 10.17182/hepdata.65435

The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of ${\sqrt{s} =7}$TeV in different intervals of pseudorapidity $\eta$. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the $\eta$ ranges $-2.5&lt;\eta&lt;-2.0$ and $2.0&lt;\eta&lt;4.5$. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of $\eta$. In general, the models underestimate the charged particle production.

8 data tables

Charged particle multiplicity distribution in minimum bias events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.

Charged particle multiplicity distribution in hard QCD events for different pseudorapidity bins. The first quoted uncertainty is statistical and the second is systematic.

Charged particle multiplicity distribution for minimum bias events in the full pseudorapidity range. The first quoted uncertainty is statistical and the second is systematic.

More…

Higher Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 022302, 2010.
Inspire Record 853304 DOI 10.17182/hepdata.73344

We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.

40 data tables

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).

More…

Scaled momentum spectra in deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 06 (2010) 009, 2010.
Inspire Record 844129 DOI 10.17182/hepdata.55368

Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb^-1. Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q^2, is described in the kinematic region 10&lt;Q^2&lt;41000 GeV^2. Next-to-leading-order and modified leading-log-approximation QCD calculations as well as predictions from Monte Carlo models are compared to the data. The results are also compared to e+e- annihilation data. The dependences of the pseudorapidity distribution of the particles on Q^2 and on the energy in the \gamma p system, W, are presented and interpreted in the context of the hypothesis of limiting fragmentation.

26 data tables

Bin averaged scaled momentum spectra in the Q**2 ranges 160 to 320 and 320 to 640 GeV**2.

Bin averaged scaled momentum spectra in the Q**2 ranges 640 to 1280 and 1280 to 2560 GeV**2.

Bin averaged scaled momentum spectra in the Q**2 ranges 2560 to 5120 and 51200 to 10240 GeV**2.

More…

Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…