We have measured the inclusive cross section for η production in e+e− interactions near charm threshold using the Crystal Ball detector. No pronounced structure in the energy dependence is observed. By comparing cross sections above and below charm threshold we obtain the limits (90% confidence limit): R(e+e−→FF¯X)RB(F→ηx)<0.15−0.32 (for Ec.m. from 4.0 to 4.5 GeV), RB(D→ηx)<0.13. Our results are inconsistent with a previous report of a large energy dependence of the η cross section ascribed to the crossing of the FF* and F*F* production thresholds.
Axis error includes +- 0.0/0.0 contribution (?////DECAY PI0 --> 2GAMMA//RES-DEF(RES=ETA,BACK=CORRECTED,DEF=340 < M( 2GAMMA ) < 800 MEV)//DECAY-BR(BRN=ETA --> 2GAMMA,BR=38 PCT)).
THE 4.028 GEV DATA ARE NOT INCLUDED IN THE 4.005-4.082 GEV BIN. Axis error includes +- 0.0/0.0 contribution (?////DECAY PI0 --> 2GAMMA//RES-DEF(RES=ETA,BACK=CORRECTED,DEF=340 < M( 2GAMMA ) < 800 MEV)//DECAY-BR(BRN=ETA --> 2GAMMA,BR=38 PCT)).
AT FIXED ENERGIES.
We have analysed about 85 000 fast Λ 0 events, obtained in a fast proton triggered experiment performed at the CERN-Ω spectrometer at 9 and 12 GeV/ c incident π − beam. Nearly 2500 Λ 0 K + π − events have been isolated. We find strong production of quasi-two-body processes Λ 0 K ∗0 and ∑ ∗− K + consistent with u -channel hyperon exchange. Results on Λ 0 polarization, K ∗0 decay parameters and differential cross sections are given for Λ 0 K ∗0 (892) and Λ 0 K ∗0 (1430) final states. A comparison is made with the associated backward Λ 0 (1520) K ∗0 production seen in the four-prong reaction π − p→pK − K + π − obtained in the same experiment.
No description provided.
No description provided.
EXPONENTIAL FIT TO DN/DU.
We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.
THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).
We have studied the backward production of ω 0 mesons in the u -channel I u = 1 2 exchange reaction π − p → N 0 (1680) ω 0 at 9 GeV/ c and 12 GeV/ c incident momenta. The data come from an experiment performed at the CERN Omega Spectrometer using a fast proton trigger device. The backward production of the η 0 meson has also been observed and the coupling constant ratio g η NN / g π NN has been estimated.
No description provided.
No description provided.
JACKSON FRAME (U-CHANNEL HELICITY SYSTEM).
We have analyzed backward meson production in the reaction π − p → p f π + π − π − at 9 GeV/ c and 12 GeV/ c incident π − momenta, from an experiment performed at the CERN Ω Spectrometer using a fast proton (p f ) trigger device. We find strong production of quasi-two-body processes N ∗ ϱ and N ∗ f with a production mechanism consistent with u -channel nucleon exchange. At a lower level, we observe N ∗ π processes with a 3-body baryon decay through Δ(1232)π. In the (3π) − system, we find evidence for A 1 − and clear A 2 − backward production with similar cross sections (≈0.5 μb).
No description provided.
U-HELICITY JACKSON FRAME.
U-HELICITY JACKSON FRAME.
Results on backward (3 π ) - system produced in π - p→p f π + π - π - reaction at 9 and 12 GeV/ c are given. The ϱ 0 π - mass spectra show two clear signals at 1050 MeV (A 1 region) and 1303 MeV (A - 2 ). The width of the enhancement in the A 1 region (195±32 MeV) is narrower than found in diffractive experiments. Total backward cross sections for those signals are of the same order of magnitude (∼0.5 μb).
No description provided.
We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.
No description provided.
None
SIG(C=BACKWARD) = SIG(-UP<1 GEV**2)/(1-EXP(-SLOPE)). UP DISTRIBUTION OF EVENTS HAS A PERFECT EXPONENTIAL SHAPE.
We measured the cross section for proton-proton elastic scattering at 11.75 GeV/c using the Zero Gradient Synchrotron 52% polarized proton beam and a 60% polarized proton target. We measured dσdt(ij) in the ↑↑, ↓↓, and ↑↓ initial spin states perpendicular to the scattering plane in the range P⊥2=2.0−3.6 (GeV/c)2. We found that the asymmetry parameter A decreases smoothly with increasing P⊥2 in this range, and that the spin-spin correlation parameter Cnn may have a minimum near P⊥2=3 (GeV/c)2.
No description provided.
In π − p interactions at 9 GeV/ c and 12 GeV/ c , the forward production of N ∗ 1680 and N ∗ 1520 has been observed with features of nucleon exchange. The production of Δ1232 is strongly suppressed.
No description provided.
SLOPE ABOUT 6 GEV**-2 FOR SMALL U AND EVIDENCE FOR CHANGE OF SLOPE NEAR -U = 0.15 GEV**2.