Long-range pseudorapidity dihadron correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 747 (2015) 265-271, 2015.
Inspire Record 1346551 DOI 10.17182/hepdata.72303

Dihadron angular correlations in $d$+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity ($\Delta\eta$) on the near side (i.e. relative azimuth $\Delta\phi\sim0$). This correlated yield as a function of $\Delta\eta$ appears to scale with the dominant, primarily jet-related, away-side ($\Delta\phi\sim\pi$) yield. The Fourier coefficients of the $\Delta\phi$ correlation, $V_{n}=\langle\cos n\Delta\phi\rangle$, have a strong $\Delta\eta$ dependence. In addition, it is found that $V_{1}$ is approximately inversely proportional to the mid-rapidity event multiplicity, while $V_{2}$ is independent of it with similar magnitude in the forward ($d$-going) and backward (Au-going) directions.

23 data tables

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for 1.2 < $|\Delta\eta|$ < 1.8 in d+Au collisions, for high ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

Correlated dihadron yield, per radian per unit of pseudorapidity, as a function of $\Delta\phi$ for -4.5 < $\Delta\eta$ < -2 in d+Au collisions, for low ZDC-Au activity data. Both the trigger and associated particles have 1 < $p_T$ < 3 GeV/c.

More…

Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Measurement of Charged Pion Production Yields off the NuMI Target

The MIPP collaboration Paley, J.M. ; Messier, M.D. ; Raja, R. ; et al.
Phys.Rev.D 90 (2014) 032001, 2014.
Inspire Record 1291947 DOI 10.17182/hepdata.64417

The fixed-target MIPP experiment, Fermilab E907, was designed to measure the production of hadrons from the collisions of hadrons of momenta ranging from 5 to 120 GeV/c on a variety of nuclei. These data will generally improve the simulation of particle detectors and predictions of particle beam fluxes at accelerators. The spectrometer momentum resolution is between 3 and 4%, and particle identification is performed for particles ranging between 0.3 and 80 GeV/c using $dE/dx$, time-of-flight and Cherenkov radiation measurements. MIPP collected $1.42 \times10^6$ events of 120 GeV Main Injector protons striking a target used in the NuMI facility at Fermilab. The data have been analyzed and we present here charged pion yields per proton-on-target determined in bins of longitudinal and transverse momentum between 0.5 and 80 GeV/c, with combined statistical and systematic relative uncertainties between 5 and 10%.

1 data table

The production yields of PI+ and PI- and the ratio of these yields. The first uncertainty given on each value combines statistical uncertainties and systematic uncertainties from backgrounds.


Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 092301, 2014.
Inspire Record 1280557 DOI 10.17182/hepdata.105915

We report the first measurements of the moments -- mean ($M$), variance ($\sigma^{2}$), skewness ($S$) and kurtosis ($\kappa$) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\sqrt {{s_{\rm NN}}}$= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, $\sigma^{2}/M$, $S\sigma$ and $\kappa\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\kappa\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

45 data tables

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

More…

Suppression of Upsilon Production in d+Au and Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 735 (2014) 127-137, 2014.
Inspire Record 1269346 DOI 10.17182/hepdata.102940

We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.

14 data tables

Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, p+p.

Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, d+Au.

(a) $B_{ee} \times d\sigma/dy$ vs. $y$ for p+p collisions and for d+Au collisions (scaled down by 103).

More…

Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

46 data tables

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…

Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 89 (2014) 012001, 2014.
Inspire Record 1253360 DOI 10.17182/hepdata.103061

The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < {\eta} < 2.0 in polarized proton-proton collisions at sqrt{s} = 200 GeV are presented. Neutral pions were detected using the endcap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p_T < 16 GeV/c and is found to be within the scale uncertainty of a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry, A_LL, is measured in the same pseudorapidity range. This quantity is sensitive to the gluonic contribution to the proton spin, {\Delta}g(x), at low Bjorken-x (down to x approx 0.01), where it is less constrained by measurements at central pseudorapidity. The measured A_LL is consistent with model predictions. The parity-violating asymmetry, A_L, is also measured and found to be consistent with zero. The transverse single-spin asymmetry, A_N, is measured within a previously unexplored kinematic range in Feynman-x and p_T. Such measurements may aid our understanding of the on-set and kinematic dependence of the large asymmetries observed at more forward pseudorapidity ({\eta} approx 3) and their underlying mechanisms. The A_N results presented are consistent with a twist-3 model prediction of a small asymmetry within the present kinematic range.

16 data tables

Distributions of x1 and x2 in two different bins of reconstructed $\pi^{0}$ pT for events at $\sqrt{s}$ = 200 GeV over 0.8 < $\eta$ < 2.

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.

More…

Measurement of the polarization of the recoil proton in $\gamma+p \to p + \pi^{0}$ using a propane-ethane bubble chamber

Bertanza, L. ; Mannelli, I. ; Santucci, S. ; et al.
Nuovo Cim. 24 (1962) 734-745, 1962.
Inspire Record 1187694 DOI 10.17182/hepdata.37757

The polarization of the recoil proton in γ + p → p + π0 has been measured at photon energies of 725 MeV and 900 MeV for centerof-mass angles near 90° using a small propane-ethane gas bubble chamber. Protons emerging from a liquid hydrogen target are momentum-analysed with a magnet, and the scattering from carbon observed in the bubble chamber. A counter telescope rejects pions and electrons, and protons from multiple pion processes are discriminated against by keeping the peak bremsstrahlung energy just above the mean photon energy. The visual method of observing scattering asymmetries has the advantage of being insensitive to systematic asymmetries in the incoming proton flux. It also quickly eliminates strongly inelastic scatters (stars), and provides a complete angular distribution from which the fraction of scatters which are inelastic can be deduced. The effect of inelastic scatters upon the scattering asymmetry is large when the energy-loss resolution is poor, an inherent problem with bremsstrahlung beams. The counting rate for this small chamber (3.4g/cm2 carbon scatterer) was 11 scatters/hour using every 5th synchrotron pulse; larger chambers with more dense scatterers (such as Freon) could give higher counting rates. Results are fork = 725MeV and ϑ (pion) = 87° (cm.), P=0.74±0.20, and for k=900MeV and ϑ (pion) = 70°, P=.51±.7. P is taken to be positive along the directionK xp, wherep is the momentum of the outgoing proton.

1 data table

No description provided.


Forward Neutron Production at the Fermilab Main Injector

The MIPP collaboration Nigmanov, T.S. ; Rajaram, D. ; Longo, M.J. ; et al.
Phys.Rev.D 83 (2011) 012002, 2011.
Inspire Record 874954 DOI 10.17182/hepdata.63860

We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $\alpha$ is $0.46\pm0.06$ for a beam momentum of 58 GeV/c and 0.54$\pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.

21 data tables

Total inelastic PP cross section.

Average multiplicities and production cross section for neutral particles from PP interactions at 84 GeV.

Cross sections for neutron production greater than threshold and within an angular range of 20.4 mrad.

More…

Measurement of Charm Production Cross Sections in $e^+e^-$ Annihilation at Energies between 3.97 and 4.26 GeV

The CLEO collaboration Cronin-Hennessy, D. ; Gao, K.Y. ; Hietala, J. ; et al.
Phys.Rev.D 80 (2009) 072001, 2009.
Inspire Record 777917 DOI 10.17182/hepdata.47185

Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260).

6 data tables

Exclusive cross section for two body neutral non-strange charm mesons.

Exclusive cross section for two body charged non-strange charm mesons.

Exclusive cross section for two body strange charm mesons.

More…