None
No description provided.
No description provided.
IM(AMP) VIA OPTICAL THEOREM FROM TOTAL CROSS SECTIONS OF L. M. VASILYEV ET AL., PL 36B, 528 (1971).
The differential cross section d σ d t′ for the charge-exchange process π + p → π 0 ( π + p) at 8, 16 and 23 GeV/ c is presented for several regions of the π + p effective mass. It is found that the dip at t ′ ≈ 0.6 (GeV/ c ) 2 which is observed in the Δ(1236) mass band becomes a less pronounced structure in the higher mass regions. However, while the slope of the d σ d t′ distributions in the near-forward direction decreases strongly with increasing π + p mass, there is no evidence that the observed structure moves to higher values of t ′ as the π + p mass increases. These results are consistent with a Regge-exchange picture where the position of the dip is determined by the exchanged trajectory, but are inconsistent with a simple geometrical picture.
TP DEPENDENCE FOR FOUR <PI+ P> MASS INTERVALS.
We have measured small angle elastic pion-proton scattering in 40 and 50 GeV c π − beams at Serpukhov. Analysis of the data in the Coulomb interference region yields a value for the ratio of the real to the imaginary part of the strong amplitude, ϱ (0)=−0.074 ± 0.033 at 40 GeV/ c and ϱ (0)=−0.006 ±0.026 at 50 GeV/ c
STATISTICAL ERRORS ONLY.
STATISTICAL ERRORS ONLY.
None
ONE EVENT SEEN - PROBABLY AN ANTIPROTON.
The average charged particle multiplicity, 〈 n ch ( M X 2 )〉, in the reaction K + p→K o X ++ is studied as a function of the mass squared, M X 2 , of the recoil system X and also as a function of the K o transverse momentum, p T , at incident momenta of 5.0, 8.2 and 16.0 GeV/ c . The complete data samples yield distributions which are not independent of c.m. energy squared, s , They exhibit a linear dependence on log ( M X 2 X / M o 2 )[ M o 2 =1 GeV 2 ] with a change in slope occurring for M X 2 ≈ s /2, and do not agree with the corresponding distributions of 〈 n ch 〉 as a function of s for K + p inelastic scattering. Sub-samples of the data for which K o production via beam fragmentation, central production and target fragmentation are expected to be the dominant mechanisms show that, within error, the distribution of 〈 n ch ( M X 2 )〉 versus M X 2 is independent of incident momentum for each sub-sample separately. In particular in the beam fragmentation region the 〈 n ch ( M X 2 )〉 versus M X 2 distribution agrees rather well with that of 〈 n ch 〉 versus s for inelastic K + p interactions. The latter result agrees with recent results on the reactions pp → pX and π − p → pX in the NAL energy range. Evidence is presented for the presence of different production mechanisms in these separate regions.
Two parametrizations are used for fitting of the mean multiplicity of the charged particles : MULT = CONST(C=A) + CONST(C=B)*LOG(M(P=4 5)**2/GEV**2) and MULT = CONST(C=ALPHA)**(M(P=4 5)**2/GEV**2)**POWER.
We have measured elastic pion-proton scattering in a 50 GeV/ c π − beam at the 76 GeV proton synchrotron in Serpukhov. Data are presented for four-momenta transfer squared in the range 0.03 < t < 0.4 (GeV/ c ) 2 .
SLOPE IS 9.1, +0.2, -0.4 GEV**-2 (INCLUDING SYSTEMATIC ERRORS).
We have extracted the strong interaction form factors from K o e3 and K o μ3 data of our previously reported K o L experiment in a manner which does not assume an explicit q 2 = ( p K − p π ) 2 dependence. We present the unparameterized form factors ƒ + (q 2 ) from the K o L → πeν and K o L → πμν modes and ƒ o (q 2 ) and ξ ( q 2 ) from the K o L → πμν data. A comparison of these unparameterized results is made with the results of the Dalitz plot analyses.
The conventional form factor f+ is studied.
We have studied the proper time distribution of coherent π + π − decays from a 3 – 10 GeV/ c K L o beam incident on a one meter liquid hydrogen target using a wire spark chamber spectrometer in the 3 0 neutral beam at SLAC. We find ∣(ƒ(0) − ƒ (0))/k∣ = 0.43 ± 0.11 mb , φ(ƒ(0) − ƒ (0)) = -101 0 ± 42 0 .
No description provided.
Interactions of 2.08−BeVc positive pions with protons have been studied using the 20-in. hydrogen bubble chamber and the alternating gradient synchrotron at Brookhaven National Laboratory. Using 3000 elastic and 8000 inelastic events, the partial cross sections for elastic scattering and for meson production have been measured. The ρ+, ρ0, ω0, and η0 resonances are produced strongly and emerge predominantly in the forward direction in the center-of-mass system, suggesting a peripheral mechanism for their production. The possibility of explaining these reactions by specific particle-exchange models is investigated. More than 75% of the ρ0, ω0, and η0 are produced with the N33* (1238) isobar. The N* (1688) is produced in about one-third of the π+π+N final states. Cross sections for production of ρ+p, π+pω, N33*ω, π+pη, N33*η, π+pρ0, N33*ρ0, N15*π+, and N33*π0, are given. A1, B, φ, and X mesons are not observed.
No description provided.
A determination of the electric and magnetic form factors of the proton has been made by studying the elastic scattering of electrons from a polyethylene target by observation of the recoiling proton at 0° and 30° for values of q2 between 1 and 1.8 F−2. From these measurements we have deduced the charge radius Rc and the magnetic radius Rm of the proton and find equality within the experimental errors (Rc=0.800±0.025 F; Rm=0.810±0.029 F).
No description provided.
No description provided.
No description provided.