We have measured the production and decay angular distributions of the reaction π + p→ π O Δ ++ at 13.1 GeV/ c incident momentum. For − t > 0.1 (GeV/ c ) 2 the data is well described by M1 ϱ-exchange models, the best results being obtained from a weak cut model with a wrong signature nonsense zero. For − t < 0.1 (GeV/c) 2 there is evidence for the existence of other exchange mechanisms.
No description provided.
No description provided.
No description provided.
A sample of approximately 250 Λp interactions has been obtained in the Λ-hyperon momentum range of about 300 to 500 MeV/ c . An enhanced Λ-hyperon production rate was obtained by exposing an internally-mounted platinum target to the incident 1.5 GeV/ c meson beam. Cross sections and angular distributions are obtained for the reactions: Λ p → Λ p, Λ p → Σ o p and Λ p → Λ p π o . In the elastic channel, no strong evidence is seen near the Σ o p threshold for the presence of a 3 S 1 resonance, which has been reported, although there is some evidence for a small enhancement in this mass region. There is evidence for the presence of P-waves and probably also D-waves above about 800 MeV/ c , but not below this momentum.
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).
D(SIG)/DOMEGA IS ANALYSED IN TABLE 2 BY LEGENDRE POLYNOMIAL EXPANSION. ERRORS ADDED AS 1/SQRT(EVENTS).
Data for the reactionπ + p→f o Δ ++ at 13.1 GeV/ c is presented and discussed within a Reggeized pion exchange model with absorption.
No description provided.
NUMERICAL VALUES TAKEN FROM THE COMPILATION PDG2 (CHEW 73B). READ FROM GRAPH.
No description provided.
A measurement of the differential cross section for the reaction n + p → d + π° has been made using a neutron beam with kinetic energies up to 720 MeV. The angle and momentum of the deuterons were measured using an analyzing magnet and wire spark chambers with a magnetostrictive readout. The photons from the decaying π° were not detected. The neutron energy was calculated from the measured deuteron angle and momentum. The cross sections are compared to those for the reaction π + + d ⇆ p + p as a test of isotopic spin invariance in strong interactions. The symmetry of the cross sections about 90° is also investigated, and an upper limit of about 1% is placed on the real part of the ratio of isospin-violating to isospin-conserving amplitudes.
EKIN IS 325 TO 675 MEV.
A measurement of the differential cross section for the reaction np→ π 0 d has been made at the Lawrence Radiation Laboratory 184-inch cyclotron. A neutron beam with kinetic energies up to 720 MeV was incident on a liquid hydrogen target. The angle and momentum of the deuterons were measured using an analyzing magnet and wire spark chambers with a magnetostrictive readout. Deuterons were separated from protons by time-of-flight. The photons from the decaying π 0 were not detected. The neutron energy was calculated from the measured deuteron angle and momentum.
No description provided.
No description provided.
No description provided.
We present results of an experiment to measure the differential cross section of the reaction π−p→π0n between the forward and backward peaks. The measurements were made at incident π− momenta of 3.67 and 4.83 GeVc. The t range 1.7<~|t|<~4.9 (GeVc)2 was covered at the lower momentum and 1.8<~|t|<~7 (GeVc)2 at the higher momentum. At the lower momentum the cross section is essentially constant between |t|=2.4 and 4.8 (GeVc)2 while at the higher momentum the angular distribution exhibits a broad minimum centered at |t|=4.4 (GeVc)2.
No description provided.
No description provided.
We have measured the p¯n differential elastic cross section for −t≥0.15 (GeV/c)2. We compare our data with existing data from p¯p and np elastic scattering experiments in this energy region. Our data show a dip in the cross section at −t≃0.45 (GeV/c)2 and a secondary maximum at −t≃0.7 (GeV/c)2. We see no evidence for backward peaking in p¯n elastic scattering at this energy. Evidence is presented for I=1, t-channel exchange in N¯N scattering.
'1'. '2'. 'GLAUB'.
No description provided.
No description provided.
In the reaction p p → 3π + 3π − 2227 events, and in the reaction p p → 3π + 3π − π 0 6578 events have been analyzed. The general characteristics of the reactions, such as total cross sections, angular and momentum distributions, the production of ϱ, f, ω and η mesons, and angular correlations are presented.
No description provided.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
Differential cross sections for the reactions e−+p→e−+p+π0 and e−+p→e−+n+π+ have been measured near the Δ(1236) resonance at four-momentum transfers of 0.05, 0.13, 0.25, and 0.4 (GeV/c)2. A few measurements of the π+ angular distribution have been obtained at a four-momentum transfer of 0.6 (GeV/c)2. Cross sections for the π0 reaction are compared with dispersion-theory predictions at several pion-nucleon c.m. energies for each four-momentum transfer. A phenomenological analysis of the π0 results leads to the determination of the magnetic dipole and electric quadrupole partial-wave amplitudes and the γNΔ transition form factor. Evidence is found for the existence of a significant scaler-transverse interference term in the cross section, which is tentatively associated with the resonant scaler quadrupole interaction. Cross sections for π+ electroproduction are compared with dispersion theories using the pion form factor as a free parameter. The results suggest a form factor similar to that of the proton. A fit to the form-factor results, using the ρ-dominance model, requires mρ=560±80 MeV. The rms pion charge radius is estimated to be 〈r2〉12=0.86±0.14 F.
No description provided.
No description provided.
No description provided.
We have studied nonstrange p¯−p interactions observed in 7000 pictures of the 80-in. Brookhaven National Laboratory hydrogen bubble chamber exposed to an antiproton beam with a momentum of 6.94 BeVc. The total cross section was measured to be 58.7±2.8 mb, and the elastic interaction cross section 14.2±1.2 mb. The elastic differential cross section for four-momentum transfers (−t)≤0.3 (BeVc)2 is well described by the exponential form dσeldt=(dσdt)t=0ebt, where b=13.1±1.1 (BeVc)−2. The single-pion production cross section is 4.0±0.9 mb. This channel proceeds 70% through resonance formation. N*(1238) isobar and anti-isobar formation dominates pion production in four- and six-pronged events; the double-isobar formation cross section in the final state pπ+p¯π− is 1.35±0.2 mb. Isobar production was observed to be consistent with the predictions of a dominant one-particle-exchange process. The pion-annihilation process, which has a cross section of 25±5 mb, shows substantial pion resonance formation.
'1'. '2'.