A measurement of the cross section for production of collinear muon pairs based upon a sample of about 3000 events observed in the MAC detector at the storage ring PEP is presented. From the angular asymmetry Aμμ=0.076±0.018 the axial-vector weak neutral coupling is found to be given by gAegAμ=0.31±0.08.
Data on non-collinearity and angular distribution.
Asymmetry measurement based on extrapolation of number of events to 4 PI acceptance.
The backward differential cross section for π−−d elastic scattering has been measured at incident momenta between 420 and 1160 MeV/c. The data show two bumps at around 670 and 1100 MeV/c, two dips near 630 and 980 MeV/c, and a break at 550 MeV/c. The result of a phenonomenological fit is consistent with the existence of three dibaryon resonances in this energy region. A theoretical calculation of Kanai et al. agrees well with the data below 800 MeV/c, but the agreement becomes worse above 800 MeV/c.
STATISTICAL ERRORS ONLY.
SMALLER ANGLE DATA NOT GIVEN IN THE PAPER.
Inclusive production of (D0, D¯0) and D± mesons have been observed in e+e− annihilation at 29 GeV. The signals correspond to R values of R(D0+D¯0)=3.25±1.2 and R(D++D−)=1.35±0.6. D*± production is also observed via the process D*+→D0π+ and its charge conjugate. The D and D* production rates are compared.
EXTRAPOLATION TO ALL Z.
EXTRAPOLATION TO ALL Z.
EXTRAPOLATION TO ALL Z.
The difference between total cross sections in pure transverse-initial-spin states for the p−p interaction has been measured at Tp=487, 639, and 791 MeV, using a frozen-spin target. A comparison with previous data and available phase-shift analyses is made.
No description provided.
We have measured differential cross sections for both π+p and π−p elastic scattering at incident-pion kinetic energies of 30, 50, 70, and 90 MeV in the center-of-mass angular range between 50° and 150°. The experiment detected pions scattered from a liquid-hydrogen target with multiwire proportional chambers and scintillation-counter range telescopes. The relative accuracy of each angular distribution is better than 5%, while the absolute cross sections have uncertainties of 4% to 25%. Our results for the absolute cross section for π+p scattering at 30 and 90 MeV are inconsistent with previous measurements. Our π−p measurements comprise the first extensive set of precision differential cross sections below 90 MeV.
No description provided.
No description provided.
No description provided.
The authors have measured the polarization of 2.4×105 Λ0 hyperons in inclusive production by 12-GeV protons on tungsten at three production angles, 3.5°, 6.5°, and 9.5°. In terms of Feynman's xF and transverse momentum of Λ0, the kinematical range is 0.3<~xF<~0.8 and 0.4<~pT<~1.6 GeV/c. The observed polarization does not depend strongly on xF and increases linearly with pT to 16% at pT=1.0 GeV/c, showing a tendency to level off above that point.
No description provided.
No description provided.
No description provided.
We have studied the quasielastic reaction νμn→μ−p in an exposure of the Fermilab deuterium-filled 15-foot bubble chamber to a high-energy wide-band neutrino beam. From an analysis of the Q2 distribution based on the standard V−A theory, the axial-vector mass in a dipole parametrization of the axial-vector form factor is determined to be MA=1.05−0.16+0.12 GeV, consistent with the values previously reported from low-energy experiments.
Measured Quasi-Elastic total cross section.
Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.
ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.
STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.
STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.
Inclusive neutrino and antineutrino charged current interactions were studied in the CHARM detector exposed to neutrino and antineutrino Wide Band Beams of the CERN 400 GeV SPS. The x and Q 2 dependence of the structure functions F 2 and xF 3 and of the antiquark momentum distribution q were determined. The data have been interpreted in terms of QCD theory using the Furmanski-Petronzio method. In this way we have determined Λ LO = [190 −40 +70 ( stat ) ± 70 ( syst .)] MeV and the structure functions of quarks and gluons without specific assumptions on their analytic dependence. The results agree with previous experiments which relied on model assumptions in the analysis. We conclude that the model independent simultaneous analysis of the xF 3 , F 2 , q structure functions gives a more reliable determination of the gluon distribution in the nucleon.
No description provided.
HERE THE QBAR IS D2(SIG(ANU))/DX/DY - (1-Y)**2*D2(SIG(NU))/DX/DY.
Measurements of the K - p and K + p elastic differential cross sections at 20 and 50 GeV/ c , respectively, have been made in the momentum transfer range 0.7 < ∥ t ∥ < 8.0 GeV/ c .
No description provided.
No description provided.