Charged-particle multiplicities of quark and gluon jets in e+ e- annihilation at TRISTAN.

The TOPAZ collaboration Nakabayashi, K. ; Yamauchi, M. ; Abe, K. ; et al.
Phys.Lett.B 413 (1997) 447-452, 1997.
Inspire Record 454183 DOI 10.17182/hepdata.28238

Charged-particle multiplicity was studied in e + e − annihilation at s = 57.8 GeV using the TOPAZ detector at TRISTAN. The average multiplicity was 〈 n ch 〉 = 17.64± 0.05(stat.) ± 0.41(syst.). It was found that the multiplicity depends on the thrust ( T ) of an event. From extrapolating this relation to T = 2 3 , the multiplicity for three-fold symmetric events was estimated to be 〈n ch 〉 T = 2 3 = 23.50 −1.45 +1.25 . From this, the multiplicity ratio between gluon- and quark-jet was estimated to be r g q = 1.46 −0.13 +0.09 without any possible bias from jet clustering.

4 data tables

No description provided.

Multiplicity measured for events with a Thrust of 2/3. These are three-foldsymmetric events.

Mean charged particle multiplicity as function of -log(1-THRUST).

More…

QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

26 data tables

Determination of alpha_s.

Multiplicity and higher moments.

Thrust distribution.

More…

Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 388 (1996) 659-672, 1996.
Inspire Record 423486 DOI 10.17182/hepdata.47714

Gluon jets with about 39 GeV energy are identified in hadronic Z 0 decays by tagging two jets in the same hemisphere of an event as quark jets. Identifying the gluon jet to be all the particles observed in the hemisphere opposite to that containing the two tagged jets yields an inclusive gluon jet definition corresponding to that used in analytic calculations, allowing the first direct test of those calculations. In particular, this jet definition yields results which are only weakly dependent on a jet finding algorithm. We find r ch. =1.552±0.0041 ( stat ) ±0.061 ( syst. ) for the ratio of the mean charged particle multiplicity in gluon jets to that in light quark uds jets, where the uds jets are identified using an inclusive jet definition similar to that used for the gluon jets. Our result is in general agreement with the prediction of a recent analytic calculation which incorporates energy conservation into the parton shower branching processes, but is considerably smaller than analytic predictions which do not incorporate energy conservation.

2 data tables

Mean charged particle multiplicity in gluon jets.

Mean charged particle multiplicity in single hemisphere light quark jets.


QCD studies with e+ e- annihilation data at 130-GeV and 136-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 191-206, 1996.
Inspire Record 418007 DOI 10.17182/hepdata.47564

We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.

23 data tables

Determination of alpha_s.

Multiplicity and high moments.

Tmajor distribution.

More…

Measurement of the longitudinal, transverse and asymmetry fragmentation functions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 68 (1995) 203-214, 1995.
Inspire Record 395450 DOI 10.17182/hepdata.48040

The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.

4 data tables

Transverse component of the fragmentation function.

Longitudinal component of the fragmentation function.

Asymmetry component of the fragmentation function.

More…

Measurement of inclusive particle spectra and test of MLLA prediction in e+ e- annihilation at s**(1/2) = 58-GeV

The TOPAZ collaboration Itoh, R. ; Yamauchi, M. ; Yamaguchi, A. ; et al.
Phys.Lett.B 345 (1995) 335-342, 1995.
Inspire Record 381900 DOI 10.17182/hepdata.38345

Inclusive momentum spectra are measured for all charged particles and for each of $\pi~{\pm}$, $K~{\pm}$, $K~0/\overline{K~0}$, and $p/\overline{p}$ in hadronic events produced via $e~+e~-$ annihilation at $\sqrt{s}$=58GeV . The measured spectra are compared with QCD predictions based on the modified leading log approximation(MLLA). The MLLA model reproduces the measured spectra well. The energy dependence of the peak positions of the spectra is studied by comparing the measurements with those at other energies. The energy dependence is also well described by the MLLA model.

3 data tables

Errors include both statistical and systematic errors.

Errors include both statistical and systematic errors.

Statistical errors only.


Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 55 (1992) 39-62, 1992.
Inspire Record 334954 DOI 10.17182/hepdata.14566

The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.

16 data tables

Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.

Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.

Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.

More…

Measurement of the inclusive production of neutral pions and charged particles on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 259 (1991) 199-208, 1991.
Inspire Record 314407 DOI 10.17182/hepdata.29468

We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.

6 data tables

No description provided.

Error is dominated by systematic uncertainties.

No description provided.

More…

Charged Particle Multiplicity Distributions in $e^+ e^-$ Annihilation at 29-{GeV}: A Comparison With Hadronic Data

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Z.Phys.C 35 (1987) 323, 1987.
Inspire Record 235873 DOI 10.17182/hepdata.15773

The charged particle multiplicity distributions for two-jet events ine+e− annihilation at 29 GeV have been measured using the High Resolution Spectrometer at PEP. A Poisson distribution describes the data for both the complete event and for the single jets. In addition, no correlation is observed between the multiplicities in the two jets of an event. For fixed values of the prong number of the complete event, the multiplicity sharing between the two jets is in good agreement with a binomial distribution. The rapidity gap distribution is exponential with a slope equal to the mean rapidity density. These observations, which are consistent with a picture of independent emission of single particles, are contrasted to the results from soft hadronic collisions and conclusions are drawn about the nature of clusters.

4 data tables

Charged Particle Multiplicity distributions for single jet and whole event from the two jet sample. The numerical values are given in the paper Derrick et al, PR D34 (86) 3304, and are coded in this database as (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1437> RED = 1437 </a>).

Single Jet Mean Multiplicities.

Total event charged multiplicities.

More…

Rapidity Dependence of the Charged Particle Multiplicity Distributions in e+ e- Annihilation at 29-GeV

Derrick, M. ; Gan, K.K. ; Kooijman, P. ; et al.
Phys.Lett.B 168 (1986) 299-304, 1986.
Inspire Record 17794 DOI 10.17182/hepdata.30277

The charged particle multiplicity distribution for e + e − annihilations at s = 29 GeV has been measured using the High Resolution Spectrometer at PEP. The multiplicity distribution, expressed as a function of the mean, shows KNO scaling when compared to e + e − data at other energies. Multiplicity distributions for particles selected in different central rapidity spans are presented. All of these are well presented by the Negative binomial distribution. As the rapidity span is narrowed, the distributions become broader and approach a constant value of the parameter k .

12 data tables

KNO charged multiplicity distributions for the Inclusive Data Sample. The numerical values are calculated from the multiplicity distributions given in Derrick et al., PR D34,3304.

Folded rapidity distribution measured along the thrust axis of the event. Errors are dominated by systematics. All charged particles are assigned the pion mass.

KNO charged multiplicity distribution for the Two Jet Data Sample. The numerical values are calculated from the multiplicity distributions given in Derrick et al., PR D34,3304.

More…