The ALICE Transition Radiation Detector: construction, operation, and performance

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Nucl.Instrum.Meth.A 881 (2018) 88-127, 2018.
Inspire Record 1622554 DOI 10.17182/hepdata.79498

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.

5 data tables

Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ test beam (dE/dx). Statistical uncertainties as vertical error bars.

Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ test beam (dE/dx + TR). Statistical uncertainties as vertical error bars.

Most probable charge deposit signal normalised to that of minimum ionising particles as a function of $\beta\gamma$ for $\pi$, $\it{e}$ and proton in pp collisions ($\sqrt{s} = 7$ TeV). Statistical uncertainties as vertical error bars. Uncertainties in momentum and thus $\beta \gamma$ determination are drawn as horizontal error bars.

More…

Measurements of $\pi^{\pm}$ differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Ajaz, M. ; et al.
Eur.Phys.J.C 76 (2016) 617, 2016.
Inspire Record 1431983 DOI 10.17182/hepdata.77061

Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of $\pi^\pm$-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.

132 data tables

Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.

Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.

Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.

More…