Showing 2 of 2 results
Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z}= 0.86 \pm 0.04~\mathrm{(stat.)} \pm 0.04~\mathrm{(syst.)}~$pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the $t\bar{t}Z$ system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in $t\bar{t}Z$ events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of $1.8$ standard deviations.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Definition of the dilepton signal regions.
Definition of the trilepton signal regions.
Definition of the tetralepton signal regions.
Definition of the fiducial volumes at particle- and parton-level. Leptons refer exclusively to electrons and muons - they are dressed with additional radiation at particle-level, but not at parton-level.
Definition of the dilepton $t\bar{t}$ validation regions.
Pre-fit distribution of the number of $b$-jets in 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j1b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-5j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Definition of the tetralepton control region.
Definition of the trilepton fakes control regions.
Pre-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region.
Pre-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region.
Pre-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region.
Post-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region
Post-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region
Post-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region
Post-fit distribution of NN output in SR-2L-5j2b region.
Post-fit distribution of NN output in SR-2L-6j1b region.
Post-fit distribution of NN output in SR-2L-6j2b region.
Post-fit distribution of DNN-$t\bar{t}Z$ output in 3L-SR-ttZ region.
Post-fit distribution of DNN-$t\bar{t}Z$ outputt in 3L-SR-tZq region.
Post fit events yields in 3L-SR-WZ region.
Post-fit distribution of NN output in 4L-SR-SF region.
Post-fit distribution of NN output in 4L-SR-DF region.
Post-fit distribution of b-tagger output for leading b-jet in 4L-CR-ZZ region.
Measured values of the background normalizations obtained from the combined fit. The uncertainties include statistical and systematic sources.
Measured $\sigma_{t\bar{t}\text{Z}}$ cross sections obtained from the fits in the different lepton channels. The uncertainties include statistical and systematic sources.
Grouped impact of systematic uncertainties in the combined inclusive fit to data.
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 top-left).
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 top-right).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 bottom-left).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 bottom-right).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 top-left and Figure 11 top-left).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 top-right).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 bottom-left).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 bottom-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 top-left and Figure 11 top-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 top-right).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 bottom-left).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19 top-left and Figure 11 bottom-left).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, top-right).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19, bottom-left).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20 top-left and Figure 11 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, top-right).
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20, bottom-left)
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, bottom-right)
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21 top-left and Figure 12 top-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21, bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22 top-left and Figure 12 bottom-left).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23 top-left and Figure 12 bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, bottom-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24 top-left and Figure 12 top-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, top-right).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24, bottom-left).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, bottom-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 top-left and Figure 9 top-left).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 top-left and Figure 10 bottom-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 top-left and Figure 10 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 top-right).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 bottom-left).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 bottom-right).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 top-left and Figure 10 top-left).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 top-right).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 bottom-left).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 left and Figure 9 bottom-left).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 top-left and Figure 9 top-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 top-left and Figure 10 top-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 left and Figure 9 bottom-right).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 right).
Bootstrap replicas (0-499) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Parton-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Particle-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region CR-4L-ZZ.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at parton-level.
Ranking of nuisance parameters and background normalizations on signal strength for inclusive cross section measurement in combination of all channels
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the marginalised linear fit.
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the marginalised quadratic fit.
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the independent quadratic fits (allowing only one Wilson Coefficient to be non-zero).
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the marginalised linear fit.
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the marginalised quadratic fit.
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the independent quadratic fits (allowing only one Wilson Coefficient to be non-zero).
Observed and expected 68% and 95% credible intervals for Fisher-rotated directions of EFT sensitivity, in the marginalised linear fit.
Correlation matrix of the input particle-level observables used in the EFT fit.
Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into ll nu nu, through either W or Z bosons, and bbbar are presented. The analyses are based on a sample of proton-proton collisions at sqrt(s) = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 inverse femtobarns. Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the prediction, consistent with expectations. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.
The dijet pT distributions in data and simulated events after requiring two leptons, two b-tagged jets, and 12 < m_ll < mZ − 15 GeV, for e+e- events. The various signal hypotheses displayed have been scaled to a cross section of 5 pb for display purposes.
The dijet pT distributions in data and simulated events after requiring two leptons, two b-tagged jets, and 12 < m_ll < mZ − 15 GeV, for e+mu- and e-mu+ events. The various signal hypotheses displayed have been scaled to a cross section of 5 pb for display purposes.
The dijet pT distributions in data and simulated events after requiring two leptons, two b-tagged jets, and 12 < m_ll < mZ − 15 GeV, for mu+mu- events. The various signal hypotheses displayed have been scaled to a cross section of 5 pb for display purposes.
The mjj distribution in data and simulated events after requiring all selection criteria in the e+e- channel. The various signal hypotheses displayed have been scaled to a cross section of 5 pb for display purposes.
The mjj distribution in data and simulated events after requiring all selection criteria in the e^{+/-}mu^{-/+} channel. The various signal hypotheses displayed have been scaled to a cross section of 5 pb for display purposes.
The mjj distribution in data and simulated events after requiring all selection criteria in the mu+mu- channel. The various signal hypotheses displayed have been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events after requiring all selection criteria, in the e+e− channel. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised resonant DNN output is evaluated at mX=400GeV. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events after requiring all selection criteria, in the e+e− channel. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised nonresonant DNN output is evaluated at \kappa_\lambda=1, \kappa_t=1. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events after requiring all selection criteria, in the e^{+/-}mu^{-/+} channel. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised resonant DNN output is evaluated at mX=400GeV. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events after requiring all selection criteria, in the e^{+/-}mu^{-/+} channel. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised nonresonant DNN output is evaluated at \kappa_\lambda=1, \kappa_t=1. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events after requiring all selection criteria, in the mu+mu− channel. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised resonant DNN output is evaluated at mX=400GeV. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events after requiring all selection criteria, in the mu+mu− channel. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised nonresonant DNN output is evaluated at \kappa_\lambda=1, \kappa_t=1. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events, for the e+e- channel, in three different mjj regions. The parameterised resonant DNN output is evaluated at mX=400GeV. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events, for the e+e- channel, in three different mjj regions. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised nonresonant DNN output is evaluated at \kappa_\lambda=1, \kappa_t=1. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events, for the e^{+/-}mu^{-/+} channel, in three different mjj regions. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised resonant DNN output is evaluated at mX=400GeV. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events, for the e^{+/-}mu^{-/+} channel, in three different mjj regions. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised nonresonant DNN output is evaluated at \kappa_\lambda=1, \kappa_t=1. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events, for the mu+mu- channel, in three different mjj regions. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised resonant DNN output is evaluated at mX=400GeV. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
The DNN output distributions in data and simulated events, for the mu+mu- channel, in three different mjj regions. Output values towards 0 are background-like, while output values towards 1 are signal-like. The parameterised nonresonant DNN output is evaluated at \kappa_\lambda=1, \kappa_t=1. The signal hypothesis has been scaled to a cross section of 5 pb for display purposes.
Expected and observed 95% CL upper limits on the product of the production cross section for X and branching fraction for X -> HH -> bbVV -> bblnulnu, as a function of mX. These limits are computed using the asymptotic CLs method, combining all channels, for the spin-0 hypothesis.
Expected and observed 95% CL upper limits on the product of the production cross section for X and branching fraction for X -> HH -> bbVV -> bblnulnu, as a function of mX. These limits are computed using the asymptotic CLs method, combining all channels, for the spin-2 hypothesis.
expected and observed 95% CL upper limits on the product of the Higgs boson pair production cross section and branching fraction for HH -> bbVV -> bblnulnu as a function of kappa_top/kappa_lambda.
Exclusions in the (\kappa_top, \kappa_\lambda) plane. Parameters excluded at 95% CL with the observed data, and expected exclusions and the 68 and 95% bands.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.