No description provided.
No description provided.
A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.
Note that the sytematic uncertainties are approximately 100 pct correlated bin to bin.
The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Cross section using profile method and an isolation cut of 2 GeV in a cone around the photon. There is an additional 27 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using conversion method and an isolation cut of 2 GeV in a cone around the photon. There is an additional +32,-46 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using profile method and an isolation cut of 15 pct of the photon PT in a cone around the photon. There is an additional 29 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Data taken with the Collider Detector at Fermilab (CDF) during the 1988–1989 run of the Tevatron are used to measure the distribution of the center-of-mass (rest frame of the initial state partons) angle between isolated prompt photons and the beam direction. The shape of the angular distribution for photon-jet events is found to be significantly different from that observed in dijet data. The QCD predictions show qualitative agreement with the observed prompt photon angular distribution.
Background subtracted normalised prompt photon angular distribution.
We present measurements from events with two isolated prompt photons in p¯p collisions at √s =1.8 TeV. The differential cross section, measured as a function of transverse momentum (PT) of each photon, is about 3 times what next-to-leading-order QCD calculations predict. The cross section for photons with PT in the range 10–19 GeV is 86±27(stat)−23+32(syst) pb. We also study the correlation between the two photons in both azimuthal angle and PT. The magnitude of the vector sum of the transverse momenta of both photons, KT=‖PT1+PT2‖, has a mean value of 〈KT〉=5.1±1.1 GeV.
No description provided.
No description provided.
Vector sum of the photons transvserse momenta.. Errors contain both statistics and systematics.. Data read from plots.
A measurement of the cross-sections for single and double prompt photon production in p p interactions at s = 630 GeV is presented. The data sample corresponds to an integrated luminosity of 13.2 pb −1 . The results are in good agreement with the predictions of perturbative QCD. The signal from double prompt photon production has a statistical significance of 4.3 standard deviations.
There is an overall systematic error of 9 pct not included in the table.
Errors quoted include statistical and all PT dependent systematic uncertainties. There is in addition a 6.8 pct overall normalization uncertainty.
We present a measurement of the cross section for production of isolated prompt photons in p¯p collisions at √s =1.8 TeV. The cross section, measured as a function of transverse momentum (PT), agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Additional normalization systematic uncertainty of 27 pct for first eleven entries, and +32 pct(-46 pct) for last four entries.
A search for pairs of highpT prompt photons produced in hydrogen by a 280 GeV/c incidentπ- beam has been carried out using a fine-grained electromagnetic calorimeter and the Omega spectrometer at the CERN SPS. Clear evidence for the existence of such events is found with a six standard deviation signal forpT>3.0 GeV/c. The cross-sections are consistent with beyond leading order QCD calculations. A discussion on the determination of αs is also presented.
PT is the transverse momentum of either of the two photons.
PT is the transverse momentum of either of the two photons.
The inclusive yield of photons has been measured from deep inelastic interactions of 200 GeV muons on hydrogen. After subtracting the contributions from hadron electromagnetic decays and Bethe-Heitler muon bremsstrahlung, residual photons are observed at low p T and low z at a mean level of 0.15±0.06 per interaction. The quark Compton scattering process is unable to explain the data, thus indicating an anomalous photon production.
Z distribution of anomalous direct photons.
PT distribution of anomalous direct photons.
The inclusive cross sections for production of prompt photons and π0s by 280 GeV/c protons incident on a liquid hydrogen target, have been measured forpT in the range 4.0 to 6.5 GeV/c and for |xF|<0.45. A quantitative comparison of the prompt photon cross section with next-to-leading order QCD predictions using Duke and Owens structure functions is performed. Phenomenological fits to the π0 and prompt photon cross sections are given.
Invariant cross section.
No description provided.
Invariant cross section.