A search for a new neutral gauge boson, Z', produced in association with one or two jets, including at least one b jet, and decaying into a pair of muons is presented. The analysis uses proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. No significant deviation from background expectations is observed. Upper limits at 95% confidence level on the product of cross section, branching fraction to dimuons, acceptance, and efficiency, from 0.2 to 2 fb, are set for Z' boson masses between 125 and 350 GeV. Process-dependent products of acceptance and efficiency, and model-independent limits on the signal yield are provided. These are the only results to date in the 125$-$200 GeV mass range and the most stringent for b quark fusion production modes in the 200$-$350 GeV range, complementing inclusive Z' boson searches.
Distributions of $m_{\ell\ell}$ in the $\mathrm{SR_{b}^{mm}}$ SR. Events are divided by the bin width. Simulated signal shapes for $Z'$ boson masses of 125, 200, and 350 GeV are shown. The "Stat + syst" band shows the envelope of the fit variations with statistical uncertainties. The ratio of the nominal MC background values (dashed line) and data to the ABCD prediction is shown as a dashed line in the ratio plot. The MC background uncertainties are not shown for visual clarity.
Distributions of $m_{\ell\ell}$ in the $\mathrm{SR_{b+\textrm{j}/b}^{mm}}$ SR. Events are divided by the bin width. Simulated signal shapes for $Z'$ boson masses of 125, 200, and 350 GeV are shown. The "Stat + syst" band shows the envelope of the fit variations with statistical uncertainties. The ratio of the nominal MC background values (dashed line) and data to the ABCD prediction is shown as a dashed line in the ratio plot. The MC background uncertainties are not shown for visual clarity.
Data vs. the ABCD method background prediction for 2016 in $\mathrm{SR_{b}^{mm}}$. Events are divided by the bin width, hence fractional data counts. Error bars show statistical uncertainties of data. The blue band shows the propagated uncertainty of all individual fit variations in a given bin, which we consider to be uncorrelated. The lower panels show the ratio of the observed data to the background estimation.
A search for heavy resonances decaying into a Higgs boson (H) or a Z boson and a photon ($γ$), with the H or Z bosons decaying to a bottom quark-antiquark pair ($\mathrm{b\bar{b}}$) is presented. The analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analyzed events contain a photon and a massive large-radius jet originating from a Lorentz-boosted $\mathrm{b\bar{b}}$ system. An advanced transformer-based algorithm classifies jets according to their substructure and quark flavors, forming a tagger that identifies jets as candidates from H/Z $\to$$\mathrm{b\bar{b}}$ decays. A set of parametric functions is used to fit the photon-jet invariant mass spectrum and to extract potential signals. No significant excess is observed above the standard model expectations. The results set upper limits at 95% confidence level on the product of the cross section and the branching fraction for spin-1 H$γ$ resonances and spin-0 Z$γ$ resonances, below 0.1 and 0.3 fb, respectively, representing the most stringent limits to date.
Figure 6. Postfit $m_{j\gamma}$ spectra in the SRH1. The lower panel shows the pull distributions with respect to the best-fit function. The signals with the largest local significances are shown normalized to the observed cross section upper limits.
Figure 6. Postfit $m_{j\gamma}$ spectra in the SRZ1. The lower panel shows the pull distributions with respect to the best-fit function. The signals with the largest local significances are shown normalized to the observed cross section upper limits.
Figure 6. Postfit $m_{j\gamma}$ spectra in the SRH2. The lower panel shows the pull distributions with respect to the best-fit function. The signals with the largest local significances are shown normalized to the observed cross section upper limits.
A search for pairs of light neutral pseudoscalar bosons (A) resulting from the decay of a Higgs boson is performed. The search is conducted using LHC proton-proton collision data at $\sqrt{s}$ = 13 TeV, collected with the CMS detector in 2016$-$2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The A boson decays into a highly collimated electron-positron pair. A novel multivariate algorithm using tracks and calorimeter information is developed to identify these distinctive signatures, and events are selected with two such merged electron-positron pairs. No significant excess above the standard model background predictions is observed. Upper limits on the branching fraction for H $\to$ AA $\to$ 4e are set at 95% confidence level, for masses between 10 and 100 MeV and proper decay lengths below 100 $μ$m, reaching branching fraction sensitivities as low as 10$^{-5}$. This is the first search for Higgs boson decays to four electrons via light pseudoscalars at the LHC. It significantly improves the experimental sensitivity to axion-like particles with masses below 100 MeV.
Invariant mass distribution of the four-electron system ($m_{4 e}$) for selected events (points), compared to the background-only fit (red) with its $68\%$ and $95\%$~CL uncertainty bands (green and yellow). A non-stacked benchmark signal (blue) for a Higgs boson decaying to a pair of ALPs with $m_a=20MeV$ and $c \tau = 10\,\mu\mathrm{m}$ is overlaid and normalized to a branching ratio of $4.6 \times 10^{-5}$, which corresponds to the $95\%$~CL upper limit value set by this analysis. The lower panel shows the same data after subtracting the background fit.
Observed (solid points) and expected (dashed lines) $95\%$ CL upper limits on the Higgs boson branching fraction to a pair of ALPs decaying into electron-positron pairs ($ H \to A A \to e e$), shown as a function of the ALP mass for benchmark proper decay lengths of 1 $\,\mu\mathrm{m}$ (upper left), 10 $\,\mu\mathrm{m}$ (upper right), and 100 $\,\mu\mathrm{m}$ (lower left). The green and yellow bands represent the one and two standard deviation confidence intervals around the expected limits. The lower right panel shows a map of the observed $95\%$ CL upper limit, shown as a color scale, as a function of the ALP mass $m_ A$ and proper decay length $c \tau$.
A map of the observed $95\%$ CL upper limit on the Higgs boson branching fraction for $ H \to A A \to4 e$, as a function of the ALP mass and the ratio of the ALP coupling to electrons to the energy scale of the ALP effective interaction.
The first observation of electroweak production of a photon in association with two forward jets in proton-proton collisions is presented. The measurement uses data recorded by the CMS experiment at the LHC during 2016$-$2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis is performed in a region enriched in photon production via vector boson fusion, with a requirement on the transverse momentum of the photon to exceed 200 GeV. The cross section is measured to be 202$^{+36}_{-32}$ fb, at a significance with respect to the null hypothesis that exceeds five standard deviations. This is in agreement with the standard model prediction of 177$^{+13}_{-12}$ fb. Differential cross sections are measured as a function of various observables. Limits are set on dimension-6 effective field theory operators that contribute to the WW$γ$ interaction. The observed 95% confidence intervals for the corresponding Warsaw basis Wilson coefficients $c_\mathrm{W}$ and $c_\mathrm{HWB}$ are [$-$0.11, 0.16] and [$-$1.6, 1.5], respectively.
Summary of uncertainties affecting the measurement as extracted from the fit to data. The total uncertainty is obtained by adding individual contributions in quadrature.
The rapidity gap fraction as a function of $p_{\mathrm{T}^{veto}}$ in data and simulated samples for EW $\gamma$jj and QCD $\gamma$jj. The black points with error bars represent the data and their statistical uncertainties. The theory prediction, calculated using Madgraph5_aMC@NLO version 2.6.5 at NLO in QCD together with PYTHIA version 8.240, as well as MC statistical uncertainties are shown by the colored band.
Normalized differential cross sections, compared with the SM predictions, as a function of the absolute value of pseudorapidity of the leading jet in transverse momentum. The SM predictions are obtained using Madgraph5_aMC@NLO version 2.6.5 at NLO in QCD with PYTHIA version 8.240
The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.