Double Spin Asymmetries A_NN and A_SS at sqrt{s}=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC

The pp2pp collaboration Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 647 (2007) 98-103, 2007.
Inspire Record 729168 DOI 10.17182/hepdata.31499

We present the first measurements of the double spin asymmetries A_NN and A_SS at sqrt{s}=200 GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). The data were collected in the four momentum transfer t range 0.01<|t|<0.03 (GeV/c)^2. The measured asymmetries, which are consistent with zero, allow us to estimate upper limits on the double helicity-flip amplitudes phi_2 and phi_4 at small t as well as on the difference Delta(sigma_T) between the total cross sections for transversely polarized protons with antiparallel or parallel spin orientations.

3 data tables

Double spin asymmetries.

Double spin asymmetries.

T dependence of the double spin asymmetry ASS3 with statistical errors only.


First measurement of A(N) at s**(1/2) = 200-GeV in polarized proton proton elastic scattering at RHIC.

Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 632 (2006) 167-172, 2006.
Inspire Record 688172 DOI 10.17182/hepdata.31570

We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.

1 data table

The single spin analyzing power for 3 T intervals.


First measurement of proton proton elastic scattering at RHIC.

Bueltmann, Stephen L. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 579 (2004) 245-250, 2004.
Inspire Record 618968 DOI 10.17182/hepdata.31705

The first result of the pp2pp experiment at RHIC on elastic scattering of polarized protons at sqrt{s} = 200 GeV is reported here. The exponential slope parameter b of the diffractive peak of the elastic cross section in the t range 0.010 <= |t| <= 0.019 (GeV/c)^2 was measured to be b = 16.3 +- 1.6 (stat.) +- 0.9 (syst.) (GeV/c)^{-2} .

1 data table

Measured slope of the elastic cross section.


Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam

Tojo, J. ; Alekseev, I. ; Bai, M. ; et al.
Phys.Rev.Lett. 89 (2002) 052302, 2002.
Inspire Record 589041 DOI 10.17182/hepdata.19396

The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0\times10^{-3}<-t<4.1\times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $\text{Re} r_5=0.088\pm 0.058$ and $\text{Im} r_5=-0.161\pm 0.226$.

1 data table

The analyzing power as a function of the momentum transfer T. The two DSYS errors are (1) the systematic error in the raw asymmetry and (2) that in the polarization of the beam.


Alpha breakup of Li-6 and Li-7 near the Coulomb barrier

Kelly, G. R. ; Davis, N. J. ; Ward, R. P. ; et al.
Phys.Rev.C 63 (2001) 024601, 2001.
Inspire Record 551836 DOI 10.17182/hepdata.25434

Angular distributions of the α-particle production differential cross section from the breakup of 6Li and 7Li projectiles incident on a 208Pb target have been measured at seven projectile energies between 29 and 52 MeV. The α-breakup cross section of 6Li was found to be systematically greater than that of 7Li across the entire energy range. These data have been compared with previously reported results and with the predictions of continuum-discretized coupled channels (CDCC) calculations including resonant and nonresonant projectile breakup. The present data compare well with previous measurements, while the CDCC calculations provide a reasonable prediction of the relative α-breakup cross sections but underpredict their absolute values. The calculations confirm that a major factor in the enhancement of the 6Li to 7Li α-breakup cross section is the difference between the α-breakup thresholds of the two isotopes. These results have implications for structural studies of light exotic nuclei based on elastic scattering.

2 data tables

No description provided.

No description provided.


Search for double-Lambda hypernuclei and the H dibaryon in the (K-,K+) reaction on C-12.

The E885 collaboration Yamamoto, K. ; Alburger, D.E. ; Barnes, P.D. ; et al.
Phys.Lett.B 478 (2000) 401-407, 2000.
Inspire Record 528779 DOI 10.17182/hepdata.28030

A search for double- Λ hypernuclei ( 12 ΛΛ Be) and H -dibaryons using the 12 C( K − , K + ) reaction was performed at the BNL-AGS using a high-intensity 1.8 GeV/ c K − beam. A missing-mass analysis below the end point of the quasi-free Ξ − production was used to investigate these S =−2 systems. The upper limit obtained for the forward-angle cross section of 12 ΛΛ Be production is 6 to 10 nb/sr. This is the first search for the direct production of double- Λ hypernuclei to reach the sensitivity required to observe the signal predicted by theoretical calculations. For the H -production cross section, we have obtained an upper limit in the range of a few nb/sr to 10 nb/sr for the H mass below 2100 MeV/ c 2 . This upper limit is the most sensitive H search result to date for a tightly bound H .

2 data tables

Upper limit is given.

The production of the H-dibaryon could occur via the (K-, K+) reaction on two protons in a nucleus: K- (PP) --> K+ H-dibaryon. Upper limit is given.


Observation of a (Sigma)He-4 bound state in the He-4(K-,pi-) reaction at 600-MeV/c.

Nagae, T. ; Miyachi, T. ; Fukuda, T. ; et al.
Phys.Rev.Lett. 80 (1998) 1605-1609, 1998.
Inspire Record 468090 DOI 10.17182/hepdata.19553

We have observed a clear peak below the Σ+-production threshold in the 4He(K−,π−) reaction at 600MeV/c and θKπ=4∘. This is confirmation of the existence of the bound state of Σ4He, which was reported in the 4He(stoppedK−,π−) reaction. As in the case of stopped kaons, no such peak was found in the 4He(K−,π+) spectrum. Quantitatively reliable parameters for this level have been established. The binding energy and the width of the bound state are 4.4±0.3(stat)±1(syst) MeV and 7.0±0.7(stat)−0.0+1.2(syst) MeV, respectively.

1 data table

$HE4/S represents the HE4/SIGMA+ bound state.


Strangelet search and light nucleus production in relativistic Si + Pt and Au + Pt collisions

The E886 collaboration Rusek, A. ; Bassalleck, B. ; Berdoz, A. ; et al.
Phys.Rev.C 54 (1996) R15-R19, 1996.
Inspire Record 429741 DOI 10.17182/hepdata.25801

A strangelet search in Si+Pt and Au+Pt collisions at alternating-gradient synchrotron (AGS) energies, using a focusing spectrometer, sensitive to mass per charge of 3-14 GeV/c2 was conducted during the 1992 and 1993 heavy ion runs at the AGS. The null results thereof are presented as upper limits on the invariant production cross section, in the range of 10−5-10−4 mb c3/GeV2, and model dependent sensitivity limits in the range of 10−7-10−5 per collision. Measurements of the production cross sections of several nonstrange nuclear systems, from p to Be7 and Li8, the background of the strangelet search, are also presented.

1 data table

No description provided.


Composite particle production in relativistic Au + Pt, Si + Pt, and p + Pt collisions

The E886 collaboration Saito, N. ; Bassalleck, B. ; Burger, T. ; et al.
Phys.Rev.C 49 (1994) 3211-3218, 1994.
Inspire Record 383739 DOI 10.17182/hepdata.25998

Recently, highly relativistic Au beams have become available at the Brookhaven National Laboratory, Alternating Gradient Synchrotron. Inclusive production cross sections for composite particles, d, t, He3, and He4, in 11.5A GeV/c Au+Pt collisions have been measured using a beam line spectrometer. For comparison, composite particle production was also measured in Si+Pt and p+Pt collisions at similar beam momenta per nucleon (14.6A GeV/c and 12.9 GeV/c, respectively). The projectile dependence of the production cross section for each composite particle has been fitted to Aprojα. The parameter α can be described by a single function of the mass number and the momentum per nucleon of the produced particle. Additionally, the data are well described by momentum-space coalescence. Comparisons with similar analysis of Bevalac A+A data are made. The coalescence radii extracted from momentum-space coalescence fits are used to determine reaction volumes (‘‘source size’’) within the context of the Sato-Yazaki model.

3 data tables

No description provided.

No description provided.

No description provided.


Production of pi+-, K+-, p, and anti-p in relativistic Au + Pt, Si + Pt, and p + Pt collisions

The E886 collaboration Diebold, G.E. ; Bassalleck, B. ; Burger, T. ; et al.
Phys.Rev.C 48 (1993) 2984-2994, 1993.
Inspire Record 364483 DOI 10.17182/hepdata.26015

During the recent commissioning of Au beams at the Brookhaven Alternating Gradient Synchrotron facility, experiment 886 measured production cross sections for π±, K±, p, and p¯ in minimum bias Au+Pt collisions at 11.5A GeV/c. Invariant differential cross sections, Ed3σ/dp3, were measured at several rigidities (p/Z≤1.8 GeV/c) using a 5.7° (fixed-angle) focusing spectrometer. For comparison, particle production was measured in minimum bias Si+Pt collisions at 14.6A GeV/c using the same apparatus and in p+Pt collisions at 12.9 GeV/c using a similar spectrometer at KEK. When normalized to projectile mass, Aproj, the measured π± and K± cross sections are nearly equal for the p+Pt and Si+Pt reactions. In contrast to this behavior, the π− cross section measured in Au+Pt shows a significant excess beyond Aproj scaling of the p+Pt measurement. This enhancement suggests collective phenomena contribute significantly to π− production in the larger Au+Pt colliding system. For the Au+Pt reaction, the π+ and K+ yields also exceed Aproj scaling of p+Pt collisions. However, little significance can be attributed to these excesses due to larger experimental uncertainties for the positive rigidity Au beam measurements. For antiprotons, the Si+Pt and Au+Pt cross sections fall well below Aproj scaling of the p+Pt yields indicating a substantial fraction of the nuclear projectile is ineffective for p¯ production. Comparing with p+Pt multiplicities, the Si+Pt and Au+Pt antiproton yields agree with that expected solely from ‘‘first’’ nucleon-nucleon collisions (i.e., collisions between previously unstruck nucleons). In light of expected p¯ annihilation in the colliding system, such projectile independence is unexpected without additional (projectile dependent) sources of p¯ production. In this case, the data indicate an approximate balance exists between absorption and additional sources of antiprotons. This balance is remarkable given the wide range of projectile mass spanned by these measurements.

13 data tables

No description provided.

No description provided.

No description provided.

More…