Anti-p p and p p Forward Elastic Scattering Between 4-GeV/c and 10-GeV/c

Jenni, P. ; Baillon, P. ; Declais, Y. ; et al.
Nucl.Phys.B 129 (1977) 232-252, 1977.
Inspire Record 120467 DOI 10.17182/hepdata.35255

Differential cross sections have been measured in the region of small forward angles (between 0 and ∼40 mrad) for the elastic scattering reactions pp → pp at 4.2, 7.0 and 10.0 GeV /c and p p → p p at 4.2, 6.0, 8.0 and 10.0 GeV /c . The maximum momentum transfer is ∼0.025 GeV 2 at the lowest and ∼0.10 GeV/c at the highest incident momentum. Values of the slope and the real part of the forward scattering amplitude of the above reactions have been derived; the values obtained are in good agreement with dispersion relations.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Real Part of the K- n Forward Scattering Amplitude Between 1.2-GeV/c and 2.6-GeV/c

Jenni, P. ; Baillon, P. ; Bricman, C. ; et al.
Nucl.Phys.B 105 (1976) 1-22, 1976.
Inspire Record 100905 DOI 10.17182/hepdata.35921

The differential cross sections of the combined elastic and break-up K − d reaction have been measured at 1.21, 1.42 and 2.61 GeV/ c incident K − momentum. The measurements have been performed at the CERN PS using multiwire proportional chambers. The values of the invariant momentum transfer t explored (0.0005<| t |<0.1 GeV 2 ) include the Coulomb-nuclear interference region. The differential cross sections have been analysed in the framework of the Glauber impact-parameter formalism. The observed interference effects have been used to derive the ratio of the real to imaginary part of the forward K − n nuclear amplitude.

4 data tables

SUM OF COHERENT AND BREAK-UP SCATTERING.

SUM OF COHERENT AND BREAK-UP SCATTERING.

SUM OF COHERENT AND BREAK-UP SCATTERING.

More…

The Real Part of the Forward Scattering Amplitude in pi+- p Elastic Scattering Below 2-GeV/c

Baillon, P. ; Bricman, C. ; Eberhard, P. ; et al.
Phys.Lett.B 50 (1974) 387-390, 1974.
Inspire Record 89683 DOI 10.17182/hepdata.27947

The differential cross section for π ± p elastic scattering below 2 GeV/ c has been measured at small forward pion angles by an electronics experiment. The interference effects observed between the Coulomb and the nuclear interaction have been used to determine the magnitude and sign of the real parts of the π ± p forward scattering amplitude. The latter are compared to the values predicted by the dispersion relations.

7 data tables
More…

A Test of the Optical Theorem

Eberhard, P.H. ; Tripp, R.D. ; Declais, Y. ; et al.
Phys.Lett.B 53 (1974) 121-124, 1974.
Inspire Record 90454 DOI 10.17182/hepdata.27919

Forward differential cross sections for π − p elastic scattering at 1.0, 1.5 and 2.0 GeV/ c show that the square of the imaginary parts of the nuclear scattering agrees with the optical theorem prediction within ±3%, when averaged over the three momenta.

1 data table

No description provided.


Measurement of the Real Part of the Forward Scattering Amplitude in K+- p Elastic Scattering Between 0.9-GeV/c and 2.6-GeV/c

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Phys.Lett.B 50 (1974) 377-382, 1974.
Inspire Record 89483 DOI 10.17182/hepdata.27960

The differential cross section for K ± p elastic scattering has been measured in the forward meson direction (0.0008 < t < 0.1 GeV 2 ) in an electronics experiment at incident momenta between 0.9 and 2.06 GeV/ c . The high statistics and absolute normalisation of the data allow a good determination of the real part of the forward nuclear scattering amplitude by means of the Coulomb-nuclear interference effect.

1 data table

No description provided.


Measurement of the Real Part of the Forward Amplitude in anti-p p Elastic Scattering

Jenni, P. ; Baillon, P. ; Bricman, C. ; et al.
Nucl.Phys.B 94 (1975) 1-20, 1975.
Inspire Record 99005 DOI 10.17182/hepdata.31973

The differential cross sections of the elastic p p reaction have been measured at 1.2, 1.4, 1.8 and 2.6 GeV/ c incident p momentum. The measurements have been performed at the CERN PS using a system of multiwire proportional chambers. The angular region covers scattering angles from 0 to ∼200 mrad. Interference effects between the Coulomb and the nuclear amplitudes are used to derive the ratio of the real to imaginary part of the forward nuclear amplitude. These ratios are compared with theoretical predictions.

6 data tables

'MS'. 'TBIN'.

'MS'. 'TBIN'.

'MS'. 'TBIN'.

More…

Coulomb-Nuclear Interference in pi+- p and K+- p Elastic Scattering Below 3-GeV: Measurements, Real Parts and K+- p Dispersion Relations

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 105 (1976) 365-430, 1976.
Inspire Record 101037 DOI 10.17182/hepdata.13243

The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.

20 data tables

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

More…

Measurement of the Real Part of the Forward Amplitude in K- n and K+ n Elastic Scattering at 10-GeV/c and a New K+- n Dispersion Relation

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 134 (1978) 31-48, 1978.
Inspire Record 122470 DOI 10.17182/hepdata.35130

The differential cross section in the very forward direction has been measured for K − and K + scattering (break-up and coherent) on a deuterium target at an incident momentum of 10 GeV/ c . From these measurements and using a model for the scattering and re-scattering effects in deuterium, we have exploited the Coulomb-nuclear interference to deduce the real part of the K ± n scattering amplitude at a momentum transfer t = 0. The measurements are the first ever obtained for the K + n reaction and the first at this energy for the K − n reaction. A comparison has been made between our results and those predicted from dispersion relations. A new dispersion-relation fit including all the existing K ± n values at different energies has been performed.

2 data tables

SUM OF COHERENT AND BREAK-UP SCATTERING ON DEUTERIUM.

FROM FIT TO D(SIG)/DT OVER -T=0.0018 TO 0.074 GEV**2 ALLOWING FOR COULOMB SCATTERING, DOUBLE SCATTERING, INTERFERENCES AND FERMI MOTION. CORRELATION BETWEEN SLOPE AND RE(AMP)/IM(AMP) IS REFLECTED IN THE GIVEN SYSTEMATIC E RRORS.


Real Part of the K+- p Forward Scattering Amplitude at 4.2-GeV/c, 7-GeV/c and 10-GeV/c

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 107 (1976) 189-210, 1976.
Inspire Record 108434 DOI 10.17182/hepdata.35862

The differential cross section of K − p and K + p elastic scattering has been measured at 4.2, 7 and 10 GeV/ c in the very forward region of scattering angles. The measurements have been made at the CERN PS by means of multiwire proportional chambers and counters. The region of momentum transfers t is 0.001 ⩽ | t | ⩽ 0.10 GeV 2 at the highest momentum and 0.001 ⩽ | t | ⩽ 0.03 GeV 2 at the lowest. Over these regions the Coulomb and the nuclear amplitudes reach their maximum interference. We have used a parametrisation of the above amplitudes to determine the value of the real part of the nuclear forward scattering amplitude. A dispersion relation fit has then been performed using these and earlier measurements; the asymptotic behaviour of the K ± p real parts has been examined in the light of this fit.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Recoil Proton Polarization in Elastic $\pi^-p$ Scattering at $T_\pi=410$ and 492 MeV

Bareyre, P. ; Bricman, C. ; Longo, M.J. ; et al.
Phys.Rev.Lett. 14 (1965) 878-880, 1965.
Inspire Record 945162 DOI 10.17182/hepdata.21824

None

2 data tables

No description provided.

No description provided.