The cross section of the process e+e−→π+π−π0 has been measured in the c.m. energy range 984–1060 MeV with the CMD-2 detector at the VEPP-2M collider. The obtained value of Br(ϕ→e+e−)Br(ϕ→π+π−π0)=(4.51±0.16±0.11)×10−5 is in good agreement with the previous measurements and has the best accuracy. Analysis of the Dalitz plot was performed. The contributions of the dominant ϕ→ρπ mechanism as well as of a small direct ϕ→3π amplitude were determined.
Radiative decays of the $\phi$ meson have been studied using a data sample of about 19 million $\phi$ decays collected by the CMD-2 detector at VEPP-2M collider in Novosibirsk. From selected $e^+e^-\to\pi^{0}\pi^{0}\gamma$ and $e^+e^-\to\eta\pi^{0}\gamma$ events the following model independent results have been obtained: \par $Br(\phi\to\pi^{0}\pi^{0}\gamma) = (0.92\pm 0.08\pm0.06)\times10^{-4}$ for $M_{\pi^{0}\pi^{0}}>700$ MeV, \par $Br(\phi\to\eta\pi^{0}\gamma) = (0.90\pm 0.24\pm 0.10)\times10^{-4}$. It is shown that the intermediate mechanism $f_{0}(980)\gamma$ dominates in the $\phi\to\pi^{0}\pi^{0}\gamma$ decay and the corresponding branching ratio is \par $Br(\phi\to f_{0}(980)\gamma)=(2.90\pm 0.21\pm1.54)\times10^{-4}$. The systematic error is dominated by the possible model uncertainty. \par Using the same data sample the upper limit has been obtained for the P- and CP-violating decay of $\eta$ at 90% CL: \par $Br(\eta\to\pi^{0}\pi^{0}) < 4.3\times10^{-4}$ >.
The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized $p^\uparrow+p$ collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons. This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The new dataset corresponds to 25 pb$^{-1}$ integrated luminosity of $p^\uparrow+p$ collisions at $\sqrt{s}=500$ GeV, an increase of more than a factor of ten compared to our previous measurement at $\sqrt{s}=200$ GeV. Non-zero asymmetries sensitive to transversity are observed at a $Q^2$ of several hundred GeV and are found to be consistent with the former measurement and a model calculation. %we observe consistent with the former measurement are observed.} We expect that these data will enable an extraction of transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers where subleading effects are suppressed.
Using 11.6 pb^{-1} of data collected in the energy range 0.984--1.06 GeV by CMD-2 at VEPP-2M, the cross section of the reaction e+e- to pi+pi-pi+pi- has been studied. For the first time an interference pattern was observed in the energy dependence of the cross section near the phi meson. The branching ratio of the phi to pi+pi-pi+pi- decay double suppressed by the G-parity and OZI rule is measured Br(phi to pi+pi-pi+pi-) = (3.93 +- 1.74 +- 2.14) \cdot 10^{-6}. The upper limits have been placed for the decays phi to pi+pi-pi+pi-pi0 and phi to eta pi+pi- Br(phi to pi+pi-pi+pi-pi0) < 4.6 \cdot 10^{-6} 90% CL, Br(phi to eta pi+pi-) < 1.8 \cdot 10^{-5} 90% CL.
High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ($^4\bar{He}$), also known as the anti-{\alpha} ($\bar{\alpha}$), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 $^4\bar{He}$ counts were detected at the STAR experiment at RHIC in 10$^9$ recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.
Using 3.07 ${pb}^{-1}$ of data collected in the energy range 0.60-0.97 GeV by CMD-2, about 150 events of the process $\epm \to \pch$ have been selected. The energy dependence of the cross section agrees with the assumption of the $a_1(1260) \pi$ intermediate state which is dominant above 1 GeV. For the first time \fourpi events are observed at the $\rho$ meson energy. Under the assumption that all these events come from the $\rho$ meson decay, the value of the cross section at the $\rho$ meson peak corresponds to the following decay width: \Gamma(\rho^0 \to \fourpi) = (2.8 \pm 1.4 \pm 0.5) {keV} or to the branching ratio B(\rho^0 \to \fourpi) = (1.8 \pm 0.9 \pm 0.3) \cdot 10 ^{-5}.
Total cross sections of K−p and K−d have been measured between 410 and 1070 MeV/c with high statistical precision. In addition to the well known Λ(1520), Λ(1820), and Σ(1769), we confirmed the presence of the Λ(1692) and the Σ(1670). We have also observed several structures which could be Y* resonances: Λ(1646), Λ(1735), Σ(1583), Σ(1608), Σ(1633), and Σ(1715).
We present a study of the average transverse momentum ($p_t$) fluctuations and $p_t$ correlations for charged particles produced in Cu+Cu collisions at midrapidity for $\sqrt{s_{NN}} =$ 62.4 and 200 GeV. These results are compared with those published for Au+Au collisions at the same energies, to explore the system size dependence. In addition to the collision energy and system size dependence, the $p_t$ correlation results have been studied as functions of the collision centralities, the ranges in $p_t$, the pseudorapidity $\eta$, and the azimuthal angle $\phi$. The square root of the measured $p_t$ correlations when scaled by mean $p_t$ is found to be independent of both colliding beam energy and system size studied. Transport-based model calculations are found to have a better quantitative agreement with the measurements compared to models which incorporate only jetlike correlations.
We report on properties of hadronic events from e + e − annihilation observed by the ALEPH detector at the large Electron Positron Collider at CERN. The center-of-mass energy was s =91.0−91.3 GeV . Measured distributions of the global event-shape variables sphericity, aplanarity, thrust and minor value, and of the inclusive variables x p , p ⊥ in , p ⊥ out and y are presented. We measure a mean charged multiplicity in hadronic events of 〈 N ch 〉=21.3±0.1 (statistical)±0.6 (systematic). The data are in good agreement with QCD-based models which use the leading-logarithm approximation, and are less well described by a model using O( α s 2 ) QCD.
First results of the study of the process e+e- \to 4\pi by the CMD-2 collaboration at VEPP-2M are presented for the energy range 1.05--1.38 GeV. Using an integrated luminosity of 5.8 pb^{-1}, energy dependence of the processes e+e- \to \pi^+\pi^- 2\pi^0 and e+e- \to 2\pi^+ 2\pi^- has been measured. Analysis of the differential distributions demonstrates the dominance of the a_1\pi and \omega\pi intermediate states. Upper limits for the contributions of other alternative mechanisms are also placed.