Elastic Scattering Crossovers from 50-GeV to 175-GeV

The Fermilab Single Arm Spectrometer Group collaboration Anderson, R.L. ; Anelli, E.F. ; Ayres, D.S. ; et al.
Phys.Rev.Lett. 37 (1976) 1025, 1976.
Inspire Record 108810 DOI 10.17182/hepdata.21092

A comparison of K±p and p±p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19±0.04 and 0.11±0.02 GeV2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively.

1 data table

KP AND PP CROSSOVER POINTS AT -T = 0.19 +- 0.04 AND 0.11 +- 0.02 GEV**2 (AVERAGE VALUES) RESPECTIVELY.


$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

31 data tables

No description provided.

No description provided.

No description provided.

More…

The Ratio of Deep - Inelastic e-n to e-p Cross-Sections in the Threshold Region

Bodek, A. ; Dubin, D.L. ; Elias, J.E. ; et al.
Phys.Lett.B 51 (1974) 417-420, 1974.
Inspire Record 91646 DOI 10.17182/hepdata.27946

We report measurements of the ratio of the deep-inelastic electron-neutron to electron-proton differential cross sections in the threshold ( ω <3) region. The ratio was found to scale and to decrease monotically with decreasing ω . No violation of the quark model lower bound of 0.25 was observed in the ratio.

1 data table

DATA ARE AVERAGED THROUG AVAILABLE KINEMATIC REGION.


Experimental Studies of the Neutron and Proton Electromagnetic Structure Functions

Bodek, A. ; Breidenbach, Martin ; Dubin, D.L. ; et al.
Phys.Rev.D 20 (1979) 1471-1552, 1979.
Inspire Record 140185 DOI 10.17182/hepdata.4325

We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.

100 data tables

No description provided.

No description provided.

No description provided.

More…

Inelastic Diffractive Scattering at FNAL Energies

Ayres, D.S. ; Diebold, Robert E. ; Cutts, D. ; et al.
Phys.Rev.Lett. 37 (1976) 1724, 1976.
Inspire Record 109174 DOI 10.17182/hepdata.21057

Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.

1 data table

Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).


A Comparison of the Shapes of pi+ p and p p Diffraction Peaks from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, Robert E. ; Maclay, G.J. ; et al.
Phys.Rev.Lett. 37 (1976) 548, 1976.
Inspire Record 108238 DOI 10.17182/hepdata.21073

The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.

1 data table

ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.


Electron Scattering from Nuclear Targets and Quark Distributions in Nuclei

Bodek, A. ; Giokaris, N. ; Atwood, W.B. ; et al.
Phys.Rev.Lett. 50 (1983) 1431, 1983.
Inspire Record 188877 DOI 10.17182/hepdata.20553

The deep-inelastic electromagnetic structure functions of steel, deuterium, and hydrogen nuclei have been measured with use of the high-energy electron beam at the Stanford Linear Accelerator Center. The ratio of the structure functions of steel and deuterium cannot be understood simply by corrections due to Fermi-motion effects. The data indicate that the quark momentum distributions in the nucleon become distorted in the nucleus. The present results are consistent with recent measurements with high-energy muon beams.

1 data table

No description provided.


Extraction of the Structure Functions and R=Sigma-L/Sigma-T from Deep Inelastic e p and e d Cross-Sections

Riordan, E.M. ; Bodek, A. ; Breidenbach, Martin ; et al.
SLAC-PUB-1634, 1975.
Inspire Record 100687 DOI 10.17182/hepdata.591

None

103 data tables

No description provided.

No description provided.

No description provided.

More…

Comparisons of Deep Inelastic e p and e n Cross-Sections

Bodek, A. ; Breidenbach, M. ; Dubin, D.L. ; et al.
Phys.Rev.Lett. 30 (1973) 1087, 1973.
Inspire Record 83716 DOI 10.17182/hepdata.21415

Cross sections for inelastic scattering of electrons from hydrogen and deuterium were measured for incident energies from 4.5 to 18 GeV, at scattering angles of 18°, 26°, and 34°, and covering a range of squared four-momentum transfers up to 20 (GeVc)2. Neutron cross sections were extracted from the deuterium data using an impulse approximation. Comparisons with the proton measurements show significant differences between the neutron and proton cross sections.

1 data table

Axis error includes +- 1/1 contribution (DUE TO ERRORS IN ABOVE CORRECTIONSFOR DEAD-TIME LOSSES, INEFFICIENCIES IN E- IDENTIFICATION).


Measurement of the Multiple-Muon Charge Ratio in the MINOS Far Detector

The MINOS collaboration Adamson, P. ; Anghel, I. ; Aurisano, A. ; et al.
Phys.Rev.D 93 (2016) 052017, 2016.
Inspire Record 1419065 DOI 10.17182/hepdata.77051

The charge ratio, $R_\mu = N_{\mu^+}/N_{\mu^-}$, for cosmogenic multiple-muon events observed at an under- ground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be $R_\mu = 1.104 \pm 0.006 {\rm \,(stat.)} ^{+0.009}_{-0.010} {\rm \,(syst.)} $. This measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic ray interactions at TeV energies.

1 data table

Efficiency-corrected charge ratios as a function of measured muon multiplicity, $M$.