Measurement of normalized differential t-tbar cross sections in the dilepton channel from pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2018) 060, 2018.
Inspire Record 1620050 DOI 10.17182/hepdata.81686

Normalized differential cross sections for top quark pair production are measured in the dilepton (e$^+$e$^-$, $\mu^+\mu^-$, and $\mu^\mp$e$^\pm$) decay channels in proton-proton collisions at a center-of-mass energy of 13 TeV. The measurements are performed with data corresponding to an integrated luminosity of 2.1 fb$^{-1}$ using the CMS detector at the LHC. The cross sections are measured differentially as a function of the kinematic properties of the leptons, jets from bottom quark hadronization, top quarks, and top quark pairs at the particle and parton levels. The results are compared to several Monte Carlo generators that implement calculations up to next-to-leading order in perturbative quantum chromodynamics interfaced with parton showering, and also to fixed-order theoretical calculations of top quark pair production up to next-to-next-to-leading order.

28 data tables

Normalized differential ttbar cross sections with statistical and systematic uncertainties at the particle level as a function of pt(lepton).

Normalized differential ttbar cross sections with statistical and systematic uncertainties at the particle level as a function of pt(jet).

Normalized differential ttbar cross sections with statistical and systematic uncertainties at the particle level as a function of pt(top).

More…

Measurement of double-differential cross sections for top quark pair production in pp collisions at sqrt(s) = 8 TeV and impact on parton distribution functions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 77 (2017) 459, 2017.
Inspire Record 1516191 DOI 10.17182/hepdata.77008

Normalized double-differential cross sections for top quark pair (t t-bar) production are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton e+/- mu-/+ final state. The t t-bar cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and t t-bar system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured t t-bar cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.

18 data tables

The measured normalized $t\bar{t}$ double-differential cross sections in different bins of $y(t)$ and $p_{T}(t)$, along with their relative statistical and systematic uncertainties expressed as percentages.

The correlation matrix of statistical uncertainties for the normalized $t\bar{t}$ double-differential cross sections as a function of $y(t)$ and $p_{T}(t)$. The values are expressed as percentages. For bin indices see Table 5.

Sources and values of the relative systematic uncertainties in percent of the measured normalized $t\bar{t}$ double-differential cross sections as a function of $y(t)$ and $p_{T}(t)$. For bin indices see Table 5.

More…

Measurement of the ttbbar production cross section using events in the e mu final state in pp collisions at sqrt(s)=13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 172, 2017.
Inspire Record 1497736 DOI 10.17182/hepdata.76735

The cross section of top quark-antiquark pair production in proton-proton collisions at sqrt(s) = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 inverse femtobarns. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.

3 data tables

Summary of the individual contributions to the uncertainty in the $\sigma_{t\bar{t}}$ measurement.

Measurement of the $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV.

Number of dilepton events obtained after applying the full selection. The results are given for the individual sources of background, $t\bar{t}$ signal with a top quark mass of 172.5 GeV and $\sigma_{t\bar{t}}$ = 832 +/- 46 pb, and data. The uncertainties correspond to statistical and systematic components.


Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 092001, 2017.
Inspire Record 1491950 DOI 10.17182/hepdata.76554

Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurements are performed in the lepton+jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.

164 data tables

Absolute cross section at particle level.

Covariance matrix of absolute cross section at particle level.

Absolute cross section at particle level.

More…

Measurement of the mass of the top quark in decays with a J/psi meson in pp collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 12 (2016) 123, 2016.
Inspire Record 1480862 DOI 10.17182/hepdata.75539

A first measurement of the top quark mass using the decay channel t to (W to l nu) (b to J/psi + X to mu+ mu- + X) is presented. The analysis uses events selected from the proton-proton collisions recorded with the CMS detector at the LHC at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns, with 666 t t-bar and single top quark candidate events containing a reconstructed J/psi candidate decaying into an oppositely-charged muon pair. The mass of the (J/psi + l) system, where l is an electron or a muon from W boson decay, is used to extract a top quark mass of 173.5 +/- 3.0 (stat) +/- 0.9 (syst) GeV.

2 data tables

Number of selected events from simulations and observed in data. The uncertainties are statistical.

Summary of the impact of systematic uncertainties on the top quark mass according to the contributions from each source.


Measurement of the differential cross sections for top quark pair production as a function of kinematic event variables in pp collisions at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 052006, 2016.
Inspire Record 1473674 DOI 10.17182/hepdata.74124

Measurements are reported of the normalized differential cross sections for top quark pair production with respect to four kinematic event variables: the missing transverse energy; the scalar sum of the jet transverse momentum (pT); the scalar sum of the pT of all objects in the event; and the pT of leptonically decaying W bosons from top quark decays. The data sample, collected using the CMS detector at the LHC, consists of 5.0 inverse femtobarns of proton-proton collisions at sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. Top quark pair events containing one electron or muon are selected. The results are presented after correcting for detector effects to allow direct comparison with theoretical predictions. No significant deviations from the predictions of several standard model event simulation generators are observed.

16 data tables

Normalized $t\bar{t}$ differential cross section measurements with respect to the $E^{miss}_{T}$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

Normalized $t\bar{t}$ differential cross section measurements with respect to the $H_T$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

Normalized $t\bar{t}$ differential cross section measurements with respect to the $S_T$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels).

More…

Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton+jets final states produced in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 762 (2016) 512-534, 2016.
Inspire Record 1466294 DOI 10.17182/hepdata.74337

The W boson helicity fractions from top quark decays in t t-bar events are measured using data from proton-proton collisions at a centre-of-mass energy of 8 TeV. The data were collected in 2012 with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 inverse femtobarns. Events are reconstructed with either one muon or one electron, along with four jets in the final state, with two of the jets being identified as originating from b quarks. The measured helicity fractions from both channels are combined, yielding F[0] = 0.681 +/- 0.012 (stat) +/- 0.023 (syst), F[L] = 0.323 +/- 0.008 (stat) +/- 0.014 (syst), and F[R] = -0.004 +/- 0.005 (stat) +/- 0.014 (syst) for the longitudinal, left-, and right-handed components of the helicity, respectively. These measurements of the W boson helicity fractions are the most accurate to date and they agree with the predictions from the standard model.

3 data tables

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from electron+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.950.

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from muon+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.957.

Measurement of the W longitudinal (F0), left- (FL) and righ- (FR) components of the boson helicity fractions from lepton+jets final states in top quark pair decays. The helicity fractions F0 and FL are measured simultaneously and are strongly anti-correlated, with statistical correlation coefficient -0.959, and total correlation, considering both statistical and systematic uncertainties, of -0.87.


Measurement of the integrated and differential t-tbar production cross sections for high-pt top quarks in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 072002, 2016.
Inspire Record 1454211 DOI 10.17182/hepdata.78540

The cross section for pair production of top quarks (t-tbar) with high transverse momenta is measured in pp collisions, collected with the CMS detector at the LHC with sqrt(s) = 8 TeV in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed using lepton+jets events, where one top quark decays semileptonically, while the second top quark decays to a hadronic final state. The hadronic decay is reconstructed as a single, large-radius jet, and identified as a top quark candidate using jet substructure techniques. The integrated cross section and the differential cross sections as a function of top quark pt and rapidity are measured at particle level within a fiducial region related to the detector-level requirements and at parton level. The particle-level integrated cross section is found to be sigma[t-tbar] = 0.499 +/- 0.035 (stat+syst) +/- 0.095 (theory) +/- 0.013 (lumi) pb for top quark pt > 400 GeV. The parton-level measurement is sigma[t-tbar] = 1.44 +/- 0.10 (stat+syst) +/- 0.29 (theory) +/- 0.04 (lumi) pb. The integrated and differential cross section results are compared to predictions from several event generators.

3 data tables

The measurements of the integrated cross sections for $p_T^t > 400$ GeV.

Differential $t\bar{t}$ cross section in bins of $p_T$ for the $t$ jet at the particle level and the top quark at parton level.

Differential $t\bar{t}$ cross section in bins of $y$ for the $t$ jet at the particle level and the top quark at parton level.


Measurement of the top quark mass using charged particles in collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 93 (2016) 092006, 2016.
Inspire Record 1430902 DOI 10.17182/hepdata.72898

A novel technique for measuring the mass of the top quark that uses only the kinematic properties of its charged decay products is presented. Top quark pair events with final states with one or two charged leptons and hadronic jets are selected from the data set of 8 TeV proton-proton collisions, corresponding to an integrated luminosity of 19.7 inverse femtobarns. By reconstructing secondary vertices inside the selected jets and computing the invariant mass of the system formed by the secondary vertex and an isolated lepton, an observable is constructed that is sensitive to the top quark mass that is expected to be robust against the energy scale of hadronic jets. The main theoretical systematic uncertainties, concerning the modeling of the fragmentation and hadronization of b quarks and the reconstruction of secondary vertices from the decays of b hadrons, are studied. A top quark mass of 173.68 +/- 0.20 (stat) +1.58 -0.97 (syst) GeV is measured. The overall systematic uncertainty is dominated by the uncertainty in the b quark fragmentation and the modeling of kinematic properties of the top quark.

3 data tables

Combined measurement of the top quark mass.

Number of observed events and expected purity of top quark production ($t\bar{t}$ and single top quarks) for the five channels investigated in this analysis.

Summary of the systematic uncertainties in the final measurement. In cases where there are two variations of one source of uncertainty, the first and second numbers correspond, respectively, to the down and up variations. The total uncertainties are taken as the separate quadratic sum of all positive and negative shifts. For the contributions marked with a (*), the shift of the single variation including its sign is given, but the uncertainty is counted symmetrically in both up and down directions for the total uncertainty calculation.


Measurements of t t-bar charge asymmetry using dilepton final states in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 760 (2016) 365-386, 2016.
Inspire Record 1430892 DOI 10.17182/hepdata.71444

The charge asymmetry in t t-bar events is measured using dilepton final states produced in pp collisions at the LHC at sqrt(s) = 8 TeV. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.5 inverse femtobarns. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The charge asymmetry is measured from differences in kinematic distributions, unfolded to the parton level, of positively and negatively charged top quarks and leptons. The t t-bar and leptonic charge asymmetries are found to be 0.011 +/- 0.011 (stat) +/- 0.007 (syst) and 0.003 +/- 0.006 (stat) +/- 0.003 (syst), respectively. These results, as well as charge asymmetry measurements made as a function of the invariant mass, rapidity, and transverse momentum of the t t-bar system, are in agreement with predictions of the standard model.

43 data tables

Inclusive values of the asymmetry variables.

Values of the 6 bins of the normalized differential cross section as a function of $\Delta|y_\mathrm{t}|$.

Statistical covariance matrix for the 6 bins of the normalized differential cross section as a function of $\Delta|y_\mathrm{t}|$.

More…