One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm {NN}}}$ =2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 92 (2015) 054908, 2015.
Inspire Record 1379971 DOI 10.17182/hepdata.72256

The size of the particle emission region in high-energy collisions can be deduced using the femtoscopic correlations of particle pairs at low relative momentum. Such correlations arise due to quantum statistics and Coulomb and strong final state interactions. In this paper, results are presented from femtoscopic analyses of $\pi^{\pm}\pi^{\pm}$, ${\rm K}^{\pm}{\rm K}^{\pm}$, ${\rm K}^{0}_S{\rm K}^{0}_S$, ${\rm pp}$, and ${\rm \overline{p}}{\rm \overline{p}}$ correlations from Pb-Pb collisions at $\sqrt{s_{\mathrm {NN}}}=2.76$ TeV by the ALICE experiment at the LHC. One-dimensional radii of the system are extracted from correlation functions in terms of the invariant momentum difference of the pair. The comparison of the measured radii with the predictions from a hydrokinetic model is discussed. The pion and kaon source radii display a monotonic decrease with increasing average pair transverse mass $m_{\rm T}$ which is consistent with hydrodynamic model predictions for central collisions. The kaon and proton source sizes can be reasonably described by approximate $m_{\rm T}$-scaling.

33 data tables

Correlation function for ${\rm K^{\pm}}{\rm K^{\pm}}$ for centrality 0-10% and $\left < k_{\rm T} \right > = 0.35$ GeV/$c$.

Correlation function for ${\rm K^{ 0}_S}{\rm K^{ 0}_S}$ for centrality 0-10% and $\left < k_{\rm T} \right > = 0.48$ GeV/$c$.

Correlation function for ${\rm \overline{p}}{\rm \overline{p}}$ for centrality 0-10% and $\left < k_{\rm T} \right > = 1.0$ GeV/$c$.

More…

Long-range angular correlations of $\rm \pi$, K and p in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 726 (2013) 164-177, 2013.
Inspire Record 1242302 DOI 10.17182/hepdata.61628

Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range $0.3 < p_{\rm T} < 4$ GeV/$c$. The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range $|\eta_{\rm lab}|<0.8$. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of $p_{\rm T}$ and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, $v_2^p$, is observed to be smaller than that for pions, $v_2^\pi$, up to about $p_{\rm T} = 2$ GeV/$c$. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The $v_2^p$ is found to be smaller at low $p_{\rm T}$ and larger at higher $p_{\rm T}$ than $v_2^pi$, with a crossing occurring at about 2 GeV. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.

20 data tables

The Fourier coefficients V2(2PC,sub) extracted for all charged particles as a function of PT from the correlation in the 0-20% multiplicity class after subraction of the correlation from the 60-100% event class.

The Fourier coefficients V2(2PC,sub) extracted for charged pions as a function of PT from the correlation in the 0-20% multiplicity class after subraction of the correlation from the 60-100% event class.

The Fourier coefficients V2(2PC,sub) extracted for charged kaons as a function of PT from the correlation in the 0-20% multiplicity class after subraction of the correlation from the 60-100% event class.

More…