Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.
Cross section of proton Compton Scattering at centre of mass energy squared of 4.82 GeV.
Cross section of proton Compton Scattering at centre of mass energy squared of 6.79 GeV.
Cross section of proton Compton Scattering at centre of mass energy squared of 8.90 GeV.
The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 5.614 GeV.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 4.236 GeV.
Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 3.400 GeV.
We have measured the differential cross section for the gamma n --> pi- p and gamma p --> pi+ n reactions at center of mass angle of 90 degree in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at photon energies greater than 3.3 GeV exhibit a global scaling behavior for both pi- and pi+ photoproduction, consistent with the constituent counting rule and the existing pi+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi- to pi+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams.
Differential cross section at THETA(CM) = 90 degrees.
Using the CLEO~II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons $\pi^0$, $\eta$, and $\eta^{\prime}$. From our measurements we have obtained the form factors associated with the electromagnetic transitions $\gamma^*\gamma$ $\to$ meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV$^2$ for $\pi^0$, $\eta$, and $\eta^{\prime}$, respectively, and have made comparisons to various theoretical predictions.
The results of PI0 --> GAMMA GAMMA analysis assuming Br(PI0-->2GAMMA)=0.99.
The results of ETA --> GAMMA GAMMA analysis assuming Br(ETA-->2GAMMA)=0.39.
The results of ETA --> 3PI0 analysis assuming Br(ETA-->3PI0)*Br(PI0-->2GAM MA)**3 = 0.31.
An optical spark chamber and neutron time-of-flight spectrometer experiment studied the reaction π−p→π+π−n at incident pion momentum of 4.5 GeVc in the mass region of the f0 meson. Analysis of the data shows no evidence for anomalous structure in the f0 mass spectrum. The two-pion differential cross section in the f0 region is consistent with Wolf's one-pion-exchange model for momentum transfers (squared) −t≲0.7 (GeVc))2. The differential cross section is larger than that predicted at high momentum transfer, and may be attributed to natural-parity-exchange contributions as evidenced in the f0 decay distribution.
No description provided.
DIPION PRODUCTION CROSS SECTION NORMALIZED AT LOW -T TO A WOLF-MODEL F CROSS SECTION OF 400 MUB.
An experiment using optical spark chambers and a neutron time-of-flight hodoscope has been performed at the Argonne National Laboratory on the reaction π−p→ω0n. The differential cross section and the experimentally accessible density-matrix elements were determined in the momentum transfer interval 0.05≤|t|≤1.0 (GeV/c)2 at each of three incident pion momenta 3.65, 4.50, and 5.50 GeV/c. Our results show the following general features: (1) a dip in the forward differential cross section for |t|≤0.2 (GeV/c)2, (2) a slope at larger momentum transfers which increases as the incident pion momentum increases, and (3) no dips in either dσdt or ρ11+ρ1−1, the natural-parity exchange combination, at |t|=0.6 (GeV/c)2.
No description provided.
No description provided.