The total cross section for the π−p→π−π+n reaction has been measured at incident pion kinetic energies of 200, 190, 184, and 180 MeV. In addition, the π+p→π+π+n reaction was measured at 200 and 184 MeV. A fit of the cross sections by heavy baryon chiral perturbation theory yields values of 8.5±0.6(mπ−3) and 2.5±0.1(mπ−3) for the reaction matrix elements A10 and A32, which correspond to values for the s-wave isospin-0 and isospin-2 π−π scattering lengths of a0=0.23±0.08(mπ−1) and a2=−0.031±0.008(mπ−1), respectively.
No description provided.
The ratio of the exclusive production cross sections for φ and ω mesons has been measured in pp reactions at Tbeam=2.85GeV. The observed φ/ω ratio is (3.7±0.7−0.9+1.2)×10−3. After phase space corrections, this ratio is about a factor of 10 enhanced relative to naive predictions based upon the Okubo-Zweig-Iizuka rule, in comparison to an enhancement by a factor of ∼3 previously observed at higher energies. The modest increase of this enhancement near the production threshold is compared to the much larger increase of the φ/ω ratio observed in specific channels of p¯p annihilation experiments.
No description provided.
The double differential cross section for pn→pp(1S0)π− at three beam energies has been extracted from the quasifree process pd→pppπ−. A comparison is carried out with single differential cross section measurements for 3He(π−,pn)n, where the pion is thought to be absorbed onto a pp(1S0) “diproton” state. A significant difference is observed in the shape of the angular distribution between the production and absorption data. This difference is ascribed to the effects of the 3He nuclear environment characterizing the absorption process; however, an adequate theoretical explanation is not available.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
Only statistical errors are given in the table. Final P P system is in 1S0 ((2S+1) L J) state.
A search is performed for the production of the ψ(2S) in e+e− annihilation at a center-of-mass energy of 4.03 GeV using the BES detector operated at the Beijing Electron Positron Collider (BEPC). The kinematic features of the reconstructed ψ(2S) signal are consistent with its being produced only in association with an energetic photon resulting from initial state radiation (ISR). Limits are placed on ψ(2S) production from the decay of unknown charmonia or metastable hybrids that might be produced in e+e− annihilations at 4.03 GeV. Under the assumption that the observed cross section for ψ(2S) production is due entirely to ISR, the partial width Γee of the ψ(2S) is measured to be 2.07±0.32keV.
PSI(UNSPEC) is considered as a new 3D2 charmonium state. CHI/C(UNSPEC) is considered as any unknown charmonium state. EXOTIC is considered as a metastable hybrid.
Data on φ -production obtained by the CERN NA49 experiment for central Pb+Pb collisions at 158 GeV/u are presented. Compared with pp interactions the φ -yield shows substantial strangeness enhancement: the φ /π ratio is found to increase by a factor of 2.6 ± 0.6, which is approximately the square of the K/π enhancement.
5% most central collosions, MT - M0 = 0 - 1.4 GeV, preliminary data.
5% most central events.
K − /K + and p ¯ / p ratios measured in 158 A·GeV Pb+Pb collisions are shown as a function of transverse momentum P T and centrality in top 8.5% central region. Little centrality dependence of the K − / K + and p ¯ / p ratios is observed. The transverse mass m T distribution and dN/dy of K + , K − , p and p ¯ around mid-rapidity are obtained. The temperature T ch and the chemical potentials for both light and strange quarks (μ q , μ s ) at chemical freeze-out are determined by applying simple thermodynamical model to the present data. The resultant μ q , μ s and T ch are compared with those obtained from similar analysis of SPS S+A and AGS Si+A data. The chemical freeze-out temperature T ch at CERN energies is higher than thermal freeze-out temperature T fo which is extracted from m T distribution of charged hadrons. At AGS energies T ch is close to T fo .
Data obtained from the fit of MT spectra.
Data obtained from the fit of MT spectra.
An enormous enhancement of antiproton production in deuteron- and α-induced reactions has been observed in the subthreshold energy region between 2 and 5 GeV/nucleon. Antiprotons produced at 5.1° with a momentum range of between 1.0 and 2.5 GeV/ c were measured by a beam-line spectrometer and identified by the time-of-flight method. The production cross sections in the deuteron- and α-induced reactions at an incident energy of 3.5 GeV/nucleon were 2 and 3 orders of magnitude larger than those in proton-induced reaction at the same energy. The enhancement in light-ion reactions could not be explained by the internal motion in the projectile and target nuclei. The target-mass dependence (C, Al, Cu and Pb) of the cross sections has also been studied. Further, the cross sections of π and K productions were measured.
No description provided.
No description provided.
No description provided.
The πpi-system produced in the charge exchange π−p-reaction at 100 GeV/c has been studied. The experiment was performed at the CERN SPS accelerator with the multiphoton hodoscope spectrometer GAMS-400
No description provided.
No description provided.
No description provided.
The kinetic energy spectrum and the polarization of the PSI neutron beam produced in the reaction 12C(p,n)X at 0° with 590 MeV polarized protons were investigated. A strong energy dependence of the ne
No description provided.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to determine the spin correlation parameter Aoosk and the rescattering observablesKos″ so; Dos″ok, Nos″sn, andNonsk at 1.80 and 2.10 GeV. The beam polarization was oriented perpendicular to the beam direction in the horizontal scattering plane and the target polarization was directed either along the vertical axis or longitudinally. Left-right and up-down asymmetries in the second scattering were measured. A check for the beam optimization with the beam and target polarizations oriented vertically provided other observables, of which results forDonon andKonno at 1.80, 1.85, 2.04, and 2.10 GeV are listed here. The new data at 2.10 GeV suggest a smooth energy dependence of spin triplet scattering amplitudes at fixed angles in the vicinity of this energy.
Spin correlation parameter CSL measured with the beam polarisation measuredalong the +-S direction and the target polarisation along the +-L axis. Additional 4.3 PCT systematic normalisation uncertainty.
Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.
Measurement of the rescattering parameter KSS with the beam polarisation inthe +- S direction. Additional 6.7 PCT systematic error.