Momenta of charged particles produced in inelastic αα, αp, andpp collisions were measured using the Split-Field-Magnet detector at the CERN Intersecting Storage Rings. Inclusive and semi-in-clusive spectra are presented as a function of rapidityy, Feynman-x, and transverse momentumpT. The inclusivey distributions agree well with predictions of the dual parton model; the highest particle densities are reached aty≃0 and the momenta of leading protons decrease significantly for increasing total multiplicity. ‘Temperatures’ are equal in αα, αp, andpp interactions. ThepT distributions depend weakly on the multiplicity.
No description provided.
No description provided.
No description provided.
We have studied (p̄, p) reactions on 12 C , 63 Cu, and 209 Bi to search for possible nuclear states formed ny antiprotons and nuclei. The experiments used the 180 MeV antiproton beam from LEAR, and the high-resolution magnetic spectrometer, SPES II, to detect the outgoing protons. No evidence of antiproton-nucleus states was found. The gross features of the proton spectra are reasonably well described by intranuclear cascade model calculations, which consider proton emission following antiproton annihilations in the target nucleus.
Parameters resulting from the best fits to the proton spectra with the expression D2(SIG)/D(OMEGA)/D(E) = CONST*SQRT(E)*EXP(-E/SLOPE).
Inclusive cross sections are presented for 2π and 3π systems with large longitudinal x at the highest intersecting storage ring energies (s=53 GeV for 2π; s=53 and 62 GeV for 3π). The ratio π+π−π−π− rises sharply with increasing x similar to the ratio K+K−, as expected in a quark-model interpretation.
The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
The inclusive cross sections, measured up to large values of effective mass (≡q22ν), are well fitted by dσd3p=Bxexp(−αxp22mx). Values of Bx and αx are given for Be, C, Cu, and Ta at the incident proton energy of 600 MeV and for Ag, Ta, and Pt at 800 MeV. Extremely large dp and tp ratios and large A and q2 dependences of the relative cross sections are observed.
D3(SIG)/D3(P) is fitted by the equation: CONST*exp(-SLOPE*P**2/(2*M)). CONST is presented per nucleon.
D3(SIG)/D3(P) is fitted by the equation: CONST*exp(-SLOPE*P**2/(2*M)). CONST is presented per nucleon.