SPIN - PARITY ANALYSIS OF THE (p pi+ pi-) SYSTEM IN THE REACTION K- p ---> K- pi- pi+ p AT 10-GeV/c, 14.3-GeV/c AND 16-GeV/c

The Aachen-Berlin-CERN-London-Vienna collaboration Otter, G. ; Rudolph, G. ; Wieczorek, H. ; et al.
Nucl.Phys.B 139 (1978) 365-382, 1978.
Inspire Record 6590 DOI 10.17182/hepdata.42920

A partial-wave analysis of the diffractively produced p π + π − system has been performed for the reaction K − p→K − (p π + π − ) at 10, 14.3 and 16 GeV/ c using the isobar model. For p π + π − masses below 1.6 GeV, the system can be described by the states with spin-parity 1 2 + and 3 2 − . The dominant state is the 3 2 − S-wave Δπ . No evidence for resonance production can be found here. For higher masses, the states 5 2 + and 5 2 − are present in addition. The 5 2 − constitutes a violation of the Gribov-Morrison rule and its mass shape is consistent with being the D 15 N ∗ (1670) resonance. The peak in the p π + π − mass spectrum at 1.7 GeV cannot be explained by one single spin-parity state. A comparison of the diffractive reaction pomeron + p → p ππ with the formation experiment π p → N ππ is made.

1 data table match query

No description provided.


Inclusive Production of Sigma+- (1385) in K- p Interactions at 10-GeV/c and 16-GeV/c

The Aachen-Berlin-CERN-London-Vienna collaboration Grassler, H. ; Seyfert, H.H. ; Wieczorek, H. ; et al.
Nucl.Phys.B 118 (1977) 189-198, 1977.
Inspire Record 110722 DOI 10.17182/hepdata.35526

The inclusive production of Σ + (1385) and Σ − (1385) has been studied in K − p interactions at 10 and 10 and 16 GeV/ c . It is found that the cross sections for the reactions K − p → Σ ± (1385) + anything are approximately constant in the energy range form 10 to 32 GeV/ c , being ≈ 350 μ b for Σ + (1385) and ≈ 250 μ b for Σ − (1385). The d σ d p ⊥ 2 distributions for Σ ± (1385) fall off exponentially with increasing p ⊥ 2 , with sloped of about 3 (GeV/ c ) −2 . The d σ /d x distributions for Σ + (1385) and Σ − (1385) are markedly different: the production of Σ − (1385) is symmetrical forwards and backwards in the c.m.s.; for Σ + (1385), the distribution is the same as for Σ − (1385) in the forward direction, but presents a large excess of events in the backward direction. This indicates that for the production of both Σ + (1385) and Σ − (1385) the fragmentation of the incoming kaon is negligible. The fragmentation of the target proton is negligible for Σ − (1385), but it is important for Σ + (1385) and is responsible for the excess (∼100 μ b) of its cross section over that for Σ − (1385).

0 data tables match query