Experimental evidence for the existence of orbitally excited B meson states is presented in an analysis of the Bπ and B ∗ π distribution of Q = m(B ∗∗ ) − m(B (∗) ) − m(π) using Z 0 decay data taken with the DELPHI detector at LEP. The mean Q-value of the decays B ∗∗ → B (∗) π is measured to be 284 ± 5 (stat.) ± 15 (syst.) MeV/c 2 , and the Gaussian width of the signal is 79 ± 5 (stat.) ± 8 (syst.) MeV/c 2 . This signal can be described as a single resonance of mass m = 5732 ± 5 (stat.) ± 20 (syst.) MeV/c 2 and full width Γ = 145 ± 28 MeV/c 2 . The observed shape is also consistent with the production of several broad and narrow states as predicted by the quark model and partly observed in the D-meson sector. The production rate of B ∗∗ per b-jet is found to be 0.27 ± 0.02 (stat.) ± 0.06 (syst.).
No description provided.
We present the results of a search in p¯p collisions at s=1.8 TeV for the top quark decaying to a charged Higgs boson (H±). We search for dilepton final states from the decay chain tt¯→HH (or HW, or WW) + bb¯→ll+X. In a sample of 19.3 pb−1 collected during 1992-93 with the Collider Detector at Fermilab, we observe 2 events with a background estimation of 3.0 ± 1.0 events. Limits at 95% C.L. in the (Mtop,MH±) plane are presented. For the case Mtop<MW+Mb, we exclude at 95% C.L. the entire (Mtop,MH±) plane for the branching ratio B(H→τν) larger than 75%. We also interpret the results in terms of the parameter tan β of two-Higgs-doublet models.
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model parameter describing the charged Higgs decay (see text).
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).
Upper limits on the cross section at 95PCT CL. CONST(TAN(BETA)) is model pameter describing the charged Higgs decay (see text).
This paper reports the measurement of the B meson and b quark cross sections through the decay chain B0→J/ψ K*(892)0, J/ψ→μ+μ−, K*(892)0→K+π−, using 4.3 pb−1 of data collected at the Collider Detector at Fermilab in p¯p collisions at qrts=1.8 TeV. We obtain σB=1.5±0.7(stat)±0.6(syst) μb for B0 mesons with transverse momentum PT>9.0 GeV/c and rapidity ‖y‖<1.0. Using this result, we find σb=3.7±1.6(stat)±1.5(syst) μb for b quarks with PT>11.5 GeV/c and rapidity ‖y‖<1.0. The b quark cross section is compared to next-to-leading order QCD calculations and previous measurements.
B0 meson cross section.
Bquark cross section.
No description provided.
No description provided.
The charge asymmetry has been measured using $19,039W$ decays recorded by the CDF detector during the 1992-93 run of the Tevatron Collider. The asymmetry is sensitive to the ratio of $d$ and $u$ quark distributions to $x<0.01$ at $Q~2 \approx M_W~2$, where nonperturbative effects are minimal. It is found that of the two current sets of parton distributions, those of Martin, Roberts and Stirling (MRS) are favored over the sets most recently produced by the CTEQ collaboration. The $W$ asymmetry data provide a stronger constraints on $d/u$ ratio than the recent measurements of $F_2~{\mu n}/F_2~{\mu p}$ which are limited by uncertainties originating from deutron corrections.
Charge asymmetry defined as (DSIG(Q=L+)/DYRAP - DSIG(Q=L-)/DYRAP)/ (DSIG(Q=L+)/DYRAP + DSIG(Q=L-)/DYRAP). Here LEPTON are E and MU.
None
No description provided.
We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8<gW<3.1 for qWe=1 and −0.6<qWe<2.7 for gW=2 at 95% C.L.
E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper).
An analysis of inclusive production of K0 and the meson resonances K*±(892), ρ0(770),f0(975) andf2(1270) in hadronic decays of the Z0 is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0 mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0 decay. The average multiplicities off0(975) for scaled momentum,xp, in the range 0.05≤xp≤0.6 and off2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. Thef0(975) and ρ0(770)xp-spectra have similar shapes. Thef2(1270)/ρ0(770) ratio increases withxp. The average multiplicities and the differential cross sections are compared with the JETSET Parton Shower model. The model with default parameters fails to reproduce the experimental K0 momentum spectrum at low momentum, describes the K*±(892) and ρ0(770)xp-spectrum shapes, but significantly overestimates their production rates.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.
Note that the sytematic uncertainties are approximately 100 pct correlated bin to bin.
We summarize a search for the top quark with the Collider Detector at Fermilab (CDF) in a sample of $\bar{p}p$ collisions at $\sqrt{s}$= 1.8 TeV with an integrated luminosity of 19.3pb$~{-1}$. We find 12 events consistent with either two $W$ bosons, or a $W$ boson and at least one $b$ jet. The probability that the measured yield is consistent with the background is 0.26\%. Though the statistics are too limited to establish firmly the existence of the top quark, a natural interpretation of the excess is that it is due to $t\bar{t}$ production. Under this assumption, constrained fits to individual events yield a top quark mass of $174 \pm 10~{+13}_{-12}$ GeV/c$~2$. The $t\bar{t}$ production cross section is measured to be $13.9~{+6.1}_{-4.8}$pb. (Submitted to Physical Review Letters on May 16, 1994).
No description provided.