$J/\psi$ polarization in p+p collisions at $\sqrt{s}$ = 200 GeV in STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 739 (2014) 180-188, 2014.
Inspire Record 1263695 DOI 10.17182/hepdata.96232

We report on a polarization measurement of inclusive $J/\psi$ mesons in the di-electron decay channel at mid-rapidity at 2 $<p_{T}<$ 6 GeV/$c$ in $p+p$ collisions at $\sqrt{s}$ = 200 GeV. Data were taken with the STAR detector at RHIC. The $J/\psi$ polarization measurement should help to distinguish between different models of the $J/\psi$ production mechanism since they predict different $p_{T}$ dependences of the $J/\psi$ polarization. In this analysis, $J/\psi$ polarization is studied in the helicity frame. The polarization parameter $\lambda_{\theta}$ measured at RHIC becomes smaller towards high $p_{T}$, indicating more longitudinal $J/\psi$ polarization as $p_{T}$ increases. The result is compared with predictions of presently available models.

13 data tables

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $2 < p_{T}^{J/\psi} < 3$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $3 < p_{T}^{J/\psi} < 4$ GeV/c

Uncorrected cos$\theta$ distribution after the combinatorial background subtraction for $4 < p_{T}^{J/\psi} < 6$ GeV/c

More…

$J/\psi$ production at low $p_T$ in Au+Au and Cu+Cu collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 90 (2014) 024906, 2014.
Inspire Record 1258446 DOI 10.17182/hepdata.99158

The $\jpsi$ $\pt$ spectrum and nuclear modification factor ($\raa$) are reported for $\pt < 5 \ \gevc$ and $|y|<1$ from 0\% to 60\% central Au+Au and Cu+Cu collisions at $\snn = 200 \ \gev$ at STAR. A significant suppression of $\pt$-integrated $\jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $\raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $\pt$. The data are compared to high-$\pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $\pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.

11 data tables

The invariant yield versus transverse momentum for |y| < 1 in 0-20% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

The invariant yield versus transverse momentum for |y| < 1 in 20-40% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

The invariant yield versus transverse momentum for |y| < 1 in 40-60% centrality in Au+Au collisions (solid circles). The results are compared to high-$p_T$ (3 < $p_T$ < 10 GeV/c) results from STAR [9] (solid squares) and PHENIX data [8] (open squares).

More…

$K^+\Lambda$ and $K^+\Sigma^0$ photoproduction with fine center-of-mass energy resolution

The Crystal Ball at MAMI collaboration Jude, T.C. ; Glazier, D.I. ; Watts, D.P. ; et al.
Phys.Lett.B 735 (2014) 112-118, 2014.
Inspire Record 1250810 DOI 10.17182/hepdata.130796

Measurements of $\gamma p \rightarrow K^{+} \Lambda$ and $\gamma p \rightarrow K^{+} \Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark-diquark dynamics in the nucleon.

26 data tables

Excitation function at cos(Theta_K+)cm = -0.8

Excitation function at cos(Theta_K+)cm = -0.7

Excitation function at cos(Theta_K+)cm = -0.6

More…

$K^0$ Production in $e^+ e^-$ Annihilations at 30-{GeV} Center-of-mass Energy

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 94 (1980) 91-95, 1980.
Inspire Record 153341 DOI 10.17182/hepdata.27173

Inclusive K 0 -production has been measured in e + e - annihilation at a center of mass energy of about W = 30 GeV. The ratio of K 0 + K 0 production to μ + μ - production is R K 0 = 5.6 ± 1.1 (statist. error) ± 0.8 (system.error) This value is about a factor of three higher than R K 0 at W = 7 GeV. The cross sections ( s / β ) d σ /d x is consistent with a scaling behaviour.

4 data tables

No description provided.

DIFFERENTIAL CROSS SECTION.

INVARIANT CROSS SECTION.

More…

$K^0(s$) $K \pi$ Production in Tagged and Untagged $\gamma \gamma$ Interactions

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Dainton, J.B. ; et al.
Z.Phys.C 42 (1989) 367, 1989.
Inspire Record 266414 DOI 10.17182/hepdata.15529

We have searched for resonance production in the reaction γγ→Ks0Kπ. No signal was found for theηc and an upper limit for the radiative with\(\Gamma _{\gamma \gamma }^{\eta _c } \) keV (95% c.l.) is obtained. For the glueball candidate η(1440) (previouslyi) the upper limit\(\Gamma _{\gamma \gamma }^{\eta (1440)} B(\eta (1440) \to K\bar K\pi )< 1.2keV(95\% c.l.)\) is derived. In the tagged data sample resonance formation of a spin 1 state at 1420 MeV is observed, which is absent in the untagged data. The mass and width of this state are consistent with those of thef1(1420); an analysis of decay angular distributions favours positive parity.

1 data table

Data read from graph.. Additional overall systematic error decreasing from 25% in the lowest mass bins to 15% for M > 2.0 GeV.


$K^{*}(892)^0$ meson production in inelastic p+p interactions at 158 GeV/$c$ beam momentum measured by NA61/SHINE at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 460, 2020.
Inspire Record 1775731 DOI 10.17182/hepdata.94255

The measurement of $K^{*}(892)^0$ resonance production via its $K^{+}\pi^{-}$ decay mode in inelastic p+p collisions at beam momentum 158 GeV/$c$ ($\sqrt{s_{NN}}=17.3$ GeV) is presented. The data were recorded by the NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The $\textit{template}$ method was used to extract the $K^{*}(892)^0$ signal and double differential transverse momentum and rapidity spectra were obtained. The full phase-space mean multiplicity of $K^{*}(892)^0$ mesons was found to be $(78.44 \pm 0.38 \mathrm{(stat)} \pm 6.0 \mathrm{(sys)) \cdot 10^{-3}}$. The NA61/SHINE results are compared with the E$_{POS}$1.99 and Hadron Resonance Gas models as well as with world data from p+p and nucleus-nucleus collisions.

11 data tables

Numerical values of mass and width of $K^{∗}(892)^0$ mesons fitted in 0<y<0.5 and presented in Fig.8. The first uncertainty is statistical, while the second one is systematic.

Numerical values of double-differential yields $d^{2}n/dydp_{T}$ presented in Fig. 10, given in units of $10^{−3} (GeV/c)^{−1}$. The first uncertainty is statistical, while the second one is systematic

Numerical values of double-differential yields $d^{2}n/dydp_{T}$ presented in Fig. 10, given in units of $10^{−3} (GeV/c)^{−1}$. The first uncertainty is statistical, while the second one is systematic

More…

$\bar{p} p$ Annihilation Into $\pi^+ \pi^-$ and $K^+ K^-$ From Atomic $p$ States

The ASTERIX collaboration Doser, M. ; Botlo, M. ; Ahmad, S. ; et al.
Nucl.Phys.A 486 (1988) 493-511, 1988.
Inspire Record 261310 DOI 10.17182/hepdata.37012

We have obtained the branching ratios for p p annihilation at rest into π + π − and K + K − in a pure p p initial angular momentum state L = 1. A gaseous hydrogen target at normal pressure and temperature was used and events associated with transitions of the antiprotonic atom to the 2p level were selected by detecting the Balmer X-ray series. The branching ratios for p p annihilation into π + π − and K + K − from the 2p state are (4.81 ± 0.49) × 10 −3 and (2.87 ± 0.51) × 10 −4 , respect The pion yield is slightly larger than in liquid hydrogen, where L = 0 annihilation dominates, while the kaon yield is suppressed by a factor of four. Using these and previous data, we derive the branching ratios for pp annihilation into all ππ and K K modes from S and P states. A measurement in gaseous hydrogen, without X-ray requirement, yields the branching ratios (4.30 ± 0.14) × 10 −3 and (6.92 ± 0.41) × 10 −4 . With the known branching ratios of (3.33 ± 0.17) × 10 −3 and (1.01 ± 0.05) × 10 −3 in liquid hydrogen, we find that (50.3 ± 6.4)% of all annihilations in gas at NTP occur in the initial angular momentum state L = 1.

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).


$\phi$ meson production in $d+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 92 (2015) 044909, 2015.
Inspire Record 1379995 DOI 10.17182/hepdata.142332

The PHENIX experiment has measured $\phi$ meson production in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $\phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y<2.2$ ($-2.2<y<-1.2$) in the transverse-momentum ($p_T$) range from 1--7 GeV/$c$, and at midrapidity $|y|<0.35$ in the $p_T$ range below 7 GeV/$c$. The $\phi$ meson invariant yields and nuclear-modification factors as a function of $p_T$, rapidity, and centrality are reported. An enhancement of $\phi$ meson production is observed in the Au-going direction, while suppression is seen in the $d$-going direction, and no modification is observed at midrapidity relative to the yield in $p$$+$$p$ collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.

8 data tables

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

Invariant yields of $\phi$ meson production as a function of $p_T$ at different $d$+Au centrality classes. Type B represents uncertainties that are correlated from point to point.

More…

$\phi$ meson production in the forward/backward rapidity region in Cu$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 024904, 2016.
Inspire Record 1394228 DOI 10.17182/hepdata.142075

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.

7 data tables

Invariant yield as a function of the number of participating nucleons for 1.2 < $|y|$ < 2.2 and 1 < $p_T$ < 5 GeV/$c$. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of transverse momentum for 1.2 < $|y|$ < 2.2 and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

Invariant yield as a function of rapidity for 1 < $p_T$ < 5 GeV/$c$ and 0%–93% centrality. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.

More…

$\pi^+$ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

The CLAS collaboration Dugger, M. ; Ritchie, B.G. ; Ball, J.P. ; et al.
Phys.Rev.C 79 (2009) 065206, 2009.
Inspire Record 814847 DOI 10.17182/hepdata.51952

Differential cross sections for the reaction $\gamma p \to n \pi^+$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.

11 data tables

Differential cross sections for incident photon energies 0.725, 0.775, 0.825and 0.875 GeV.

Differential cross sections for incident photon energies 0.925, 0.975, 1.025and 1.075 GeV.

Differential cross sections for incident photon energies 1.125, 1.175, 1.225and 1.275 GeV.

More…