Search for the Higgs boson decays to a $\rho^0$, $\phi$, or K$^{*0}$ meson and a photon in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-23-005, 2024.
Inspire Record 2842697 DOI 10.17182/hepdata.154745

Three rare decay processes of the Higgs boson to a $\rho$(770)$^0$, $\phi$(1020), or K$^{*}$(892)$^0$ meson and a photon are searched for using $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analyzed data sets correspond to integrated luminosities up to 138 fb$^{-1}$, depending on the reconstructed final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at 95% confidence level on the Higgs boson branching fractions into $\rho$(770)$^0$$\gamma$, $\phi$(1020)$\gamma$, and K$^{*}$(892)$^0\gamma$ are determined to be 3.7 $\times$ 10$^{-4}$, 3.0 $\times$ 10$^{-4}$, and 3.0 $\times$ 10$^{-4}$, respectively. In case of the $\rho$(770)$^0$$\gamma$ and $\phi$(1020)$\gamma$ channels, these are the most stringent experimental limits to date.

3 data tables

Expected and observed UL on $\mathcal{B}(H\rightarrow\rho\gamma)$ split by analysis categories and combined. Green and yellow bands correspond to 68\% and 95\% confidence intervals on the expected upper limits.

Expected and observed UL on $\mathcal{B}(H\rightarrow\phi\gamma)$ split by analysis categories and combined. Green and yellow bands correspond to 68\% and 95\% confidence intervals on the expected upper limits.

Expected and observed UL on $\mathcal{B}(H\rightarrow K^{*0}\gamma)$ split by analysis categories and combined. Green and yellow bands correspond to 68\% and 95\% confidence intervals on the expected upper limits.


Energy-scaling behavior of intrinsic transverse momentum parameters in Drell-Yan simulation

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 111 (2025) 072003, 2025.
Inspire Record 2839223 DOI 10.17182/hepdata.154142

An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.

45 data tables

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

More…

Measurement of the Higgs boson mass and width using the four-lepton final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 111 (2025) 092014, 2025.
Inspire Record 2839209 DOI 10.17182/hepdata.153670

A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 $\pm$ 0.12 GeV, and an upper limit on the width $\Gamma_\mathrm{H}$$\lt$ 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 $^{+2.0}_{-1.5}$ MeV, in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations.

57 data tables

Observed profile likelihood projection on mH, for different flavor categories combined, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.

Observed profile likelihood projection on mH, for the 4mu final state, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.

Observed profile likelihood projection on mH, for the 4e final state, using the N-2D′ VXBS approach. Both statistical and systematic uncertainties have been considered.

More…

Version 2
Measurement of the Drell--Yan forward-backward asymmetry and of the effective leptonic weak mixing angle in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 866 (2025) 139526, 2025.
Inspire Record 2818125 DOI 10.17182/hepdata.153661

The forward-backward asymmetry in Drell-Yan production and the effective leptonic electroweak mixing angle are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb$^{-1}$. The measurement uses both dimuon and dielectron events, and is performed as a function of the dilepton mass and rapidity. The unfolded angular coefficient $A_4$ is also extracted, as a function of the dilepton mass and rapidity. Using the CT18Z set of parton distribution functions, we obtain $\sin\theta^\ell_\text{eff}$ = 0.23152 $\pm$ 0.00031, where the uncertainty includes the experimental and theoretical contributions. The measured value agrees with the standard model fit result to global experimental data. This is the most precise $\sin\theta^\ell_\text{eff}$ measurement at a hadron collider, with a precision comparable to the results obtained at LEP and SLD.

2 data tables

Measured $A_4(|Y|,M))$ distribution for the combined Run 2 data.

Correlation coefficients for the $A_4(|Y|,M)$ values among different $|Y|-M$ bins. The $A_4(|Y|,M)$ values and total uncertainties are shown in Figure 8 in the paper.


Measurement of the inclusive cross sections for W and Z boson production in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2025) 162, 2025.
Inspire Record 2816048 DOI 10.17182/hepdata.153468

Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV. Electron and muon decay modes ($\ell$ = e or $\mu$) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 $\pm$ 6 pb$^{-1}$ at 5.02 TeV and 206 $\pm$ 5 pb$^{-1}$ at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV are $\sigma$(pp $\to$ W+X) $\mathcal{B}$(W $\to$$\ell\nu$) = 7300 $\pm$ 10 (stat) $\pm$ 60 (syst) $\pm$ 140 (lumi) pb, and $\sigma$(pp $\to$ Z+X) $\mathcal{B}$(Z $\to$$\ell^+\ell^-$) = 669 $\pm$ 2 (stat) $\pm$ 6 (syst) $\pm$ 13 (lumi) pb for the dilepton invariant mass in the range of 60-120 GeV. The corresponding results at 13 TeV are 20480 $\pm$ 10 (stat) $\pm$ 170 (syst) $\pm$ 470 (lumi) pb and 1952 $\pm$ 4 (stat) $\pm$ 18 (syst) $\pm$ 45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W$^+$ and W$^-$ production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.

25 data tables

Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

Distributions of $m_T$ in the $W^{+}$ signal selection for mu final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 13TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

More…

Search for bottom quark associated production of the standard model Higgs boson in final states with leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 860 (2025) 139173, 2025.
Inspire Record 2814096 DOI 10.17182/hepdata.153508

This Letter presents the first search for bottom quark associated production of the standard model Higgs boson, in final states with leptons. Higgs boson decays to pairs of tau leptons and pairs of leptonically decaying W bosons are considered. The search is performed using data collected from 2016 to 2018 by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at the 95% confidence level are placed on the signal strength for Higgs boson production in association with bottom quarks; the observed (expected) upper limit is 3.7 (6.1) times the standard model prediction.

3 data tables

Inclusive signal strength modifiers $\mu$.

Cross section limits assuming a SM cross-section of 1.489 pb $\sigma_i$.

Signal strength modifier calculated for the bbH(yb2) process $\mu_i$.


Test of lepton flavor universality in semileptonic B$^+_\text{c}$ meson decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 111 (2025) L051102, 2025.
Inspire Record 2813755 DOI 10.17182/hepdata.153486

A measurement of the ratio of branching fractions $R$(J/$\psi$) = $\mathcal{B}$(B$^+_\text{c}$$\to$ J/$\psi$$\tau^+\nu_\tau$) / $\mathcal{B}$(B$^+_\text{c}$$\to$ J/$\psi$$\mu^+\nu_\mu$) in the J/$\psi$$\to$$\mu^+\mu^-$, $\tau^+$$\to$$\mu^+\mu_\tau\overline{\nu}_\tau$ decay channel is presented. This measurement uses a sample of proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS experiment in 2018, corresponding to an integrated luminosity of 59.7 fb$^{-1}$. The measured ratio, $R$(J/$\psi$) = 0.17 $^{+ 0.18}_{- 0.17}$ (stat) $^{+ 0.21}_{- 0.22}$ (syst) $^{+ 0.19}_{- 0.18}$ (theo) = 0.17 $\pm$ 0.33, agrees with the value of 0.2582 $\pm$ 0.0038 predicted by the standard model, which assumes lepton flavor universality. By testing lepton flavor universality, this measurement is a probe of new physics using B$^+_\text{c}$ mesons, which are currently only produced at the LHC.

1 data table

Model-independent search for pair production of new bosons decaying into muons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2024) 172, 2024.
Inspire Record 2812281 DOI 10.17182/hepdata.150033

The results of a model-independent search for the pair production of new bosons within a mass range of 0.21 $\lt m\lt$ 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb$^{-1}$ and 59.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of $0 \lt c\tau \lt$ 100 $\mu$m. Our results are combined with a previous CMS result, based on 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results.

11 data tables

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2017 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2018 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the combined 2017 and 2018 analyses. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search

More…

Search for resonant pair production of Higgs bosons in the $\mathrm{b\bar{b}b\bar{b}}$ final state using large-area jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2025) 040, 2025.
Inspire Record 2809450 DOI 10.17182/hepdata.146900

A search is presented for the resonant production of a pair of standard model-like Higgs bosons using data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected by the CMS experiment at the CERN LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The final state consists of two b quark-antiquark pairs. The search is conducted in the region of phase space where at least one of the pairs is highly Lorentz-boosted and is reconstructed as a single large-area jet. The other pair may be either similarly merged or resolved, the latter reconstructed using two b-tagged jets. The data are found to be consistent with standard model processes and are interpreted as 95% confidence level upper limits on the product of the cross sections and the branching fractions of the spin-0 radion and the spin-2 bulk graviton that arise in warped extradimensional models. The limits set are in the range 9.74-0.29 fb and 4.94-0.19 fb for a narrow radion and a graviton, respectively, with masses between 1 and 3 TeV. For a radion and for a bulk graviton with widths 10% of their masses, the limits are in the range 12.5-0.35 fb and 8.23-0.23 fb, respectively, for the same masses. These limits result in the exclusion of a narrow-width graviton with a mass below 1.2 TeV, and of narrow and 10%-width radions with masses below 2.6, and 2.9 TeV, respectively.

22 data tables

Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.

Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.

Slices of 2D distributions of observed events and the post-fit templates in the LL pass region, projected onto the plane of leading jet mass mJ1, including expected radion signal at 1.5 TeV.

More…

Constraints on the Higgs boson self-coupling from the combination of single and double Higgs boson production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 861 (2025) 139210, 2025.
Inspire Record 2808928 DOI 10.17182/hepdata.152689

The Higgs boson (H) trilinear self-coupling, $\lambda_3$, is constrained via its measured properties and limits on the HH pair production using the proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV. The combination of event categories enriched in single-H and HH events is used to measure $\kappa_\lambda$, defined as the value of $\lambda_3$ normalized to its standard model prediction, while simultaneously constraining the Higgs boson couplings to fermions and vector bosons. Values of $\kappa_\lambda$ outside the interval $-$1.2 $\lt$$\kappa_\lambda$$\lt$ 7.5 are excluded at 2$\sigma$ confidence level, which is compatible with the expected range of $-$2.0 $\lt$$\kappa_\lambda$$\lt$ 7.7 under the assumption that all other Higgs boson couplings are equal to their standard model predicted values. Relaxing the assumption on the Higgs couplings to fermions and vector bosons the observed (expected) $\kappa_\lambda$ interval is constrained to be within $-$1.4 $\lt$$\kappa_\lambda$$\lt$ 7.8 ($-$2.3 $\lt$$\kappa_\lambda$$\lt$ 7.8) at 2$\sigma$ confidence level.

20 data tables

Observed kappa lambda likelihood scan from single-H combination fixing the other Higgs boson couplings to the SM.

Observed kappa lambda likelihood scan from HH combination fixing the other Higgs boson couplings to the SM.

Observed kappa lambda likelihood scan from single-H and HH combination fixing the other Higgs boson couplings to the SM.

More…