Centrality dependence of charged hadron production in deuteron+gold and nucleon+gold collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 77 (2008) 014905, 2008.
Inspire Record 758544 DOI 10.17182/hepdata.146750

We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon was observed in one of two forward rapidity detectors. The spectra and yields were investigated as a function of the number of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A comparison of charged particle yields to those in p+p collisions show that the yield per nucleon-nucleon collision saturates with \nu for high momentum particles. We also present the charged hadron to neutral pion ratios as a function of p_T.

21 data tables

<p>Charged hadron spectra for centrality selected d+Au collisions.</p>

<p>Charged hadron spectra for centrality selected d+Au collisions.</p>

<p>Charged hadron spectra for centrality selected d+Au collisions.</p>

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Search for flavor-changing neutral-current couplings between the top quark and the $Z$ boson with LHC Run 2 proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
Phys.Rev.D 108 (2023) 032019, 2023.
Inspire Record 2627201 DOI 10.17182/hepdata.145074

A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.

18 data tables

Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.

Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.

Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).

More…

Version 2
Measurement of Spin-Density Matrix Elements in $\rho(770)$ Production with a Linearly Polarized Photon Beam at $E_\gamma = 8.2\,-\,8.8\,\text{GeV}$

The GlueX collaboration Adhikari, S. ; Afzal, F. ; Akondi, C.S. ; et al.
Phys.Rev.C 108 (2023) 055204, 2023.
Inspire Record 2660186 DOI 10.17182/hepdata.140672

The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized $8.5\,\text{GeV}$ photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction of the vector meson $\rho$(770). The statistical precision achieved exceeds that of previous experiments for polarized photoproduction in this energy range by orders of magnitude. We confirm a high degree of $s$-channel helicity conservation at small squared four-momentum transfer $t$ and are able to extract the $t$-dependence of natural and unnatural-parity exchange contributions to the production process in detail. We confirm the dominance of natural-parity exchange over the full $t$ range. We also find that helicity amplitudes in which the helicity of the incident photon and the photoproduced $\rho(770)$ differ by two units are negligible for $-t<0.5\,\text{GeV}^{2}/c^{2}$.

2 data tables

Spin-density matrix elements for the photoproduction of $\rho(770)$ in the helicity system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.

Spin-density matrix elements for the photoproduction of $\rho(770)$ in the helicity system. The first uncertainty is statistical, the second systematic. The systematic uncertainties for the polarized SDMEs $\rho^1_{ij}$ and $\rho^2_{ij}$ contain an overall relative normalization uncertainty of 2.1% which is fully correlated for all values of $-t$.


First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Akerlof, C.W. ; et al.
Phys.Rev.Lett. 131 (2023) 041002, 2023.
Inspire Record 2107834 DOI 10.17182/hepdata.144760

The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60~live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c$^2$. The most stringent limit is set for spin-independent scattering at 36 GeV/c$^2$, rejecting cross sections above 9.2$\times 10^{-48}$ cm$^2$ at the 90% confidence level.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the one-lepton final state at $\sqrt{s}$=13 TeV using 139 fb$^{-1}$ of $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 116, 2023.
Inspire Record 2181868 DOI 10.17182/hepdata.132484

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

25 data tables

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.

More…

Absence of suppression in particle production at large transverse momentum in s(NN)**(1/2) = 200-GeV d + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 072303, 2003.
Inspire Record 621391 DOI 10.17182/hepdata.143668

Transverse momentum spectra of charged hadrons with p_T < 8 GeV/c and neutral pions with p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in d+Au collisions at sqrt(s_NN) = 200 GeV. The measured yields are compared to those in p+p collisions at the same sqrt(s_NN) scaled up by the number of underlying nucleon-nucleon collisions in d+Au. The yield ratio does not show the suppression observed in central Au+Au collisions at RHIC. Instead, there is a small enhancement in the yield of high momentum particles.

10 data tables

Midrapidity $p_T$ spectra for charged hadrons.

Midrapidity $p_T$ spectra for $\pi^0$.

Nuclear modification factor $R_{dA}$ for $\pi^0$ in the PbGl and PbSc calorimeters in minimum bias $d$+$Au$.

More…

Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

86 data tables

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

Additional information containing number of events which were used to reconstruct the numvers matching to Figure 1 and 2.

More…

Measurement of density correlations in pseudorapidity via charged particle multiplicity fluctuations in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 76 (2007) 034903, 2007.
Inspire Record 749066 DOI 10.17182/hepdata.143610

Longitudinal density correlations of produced matter in Au+Au collisions at sqrt(s_NN)=200 GeV have been measured from the inclusive charged particle distributions as a function of pseudorapidity window sizes. The extracted \alpha \xi parameter, related to the susceptibility of the density fluctuations in the long wavelength limit, exhibits a non-monotonic behavior as a function of the number of participant nucleons, N_part. A local maximum is seen at N_part ~ 90, with corresponding energy density based on the Bjorken picture of \epsilon_Bj \tau ~ 2.4 GeV/(fm^2 c) with a transverse area size of 60 fm^2. This behavior may suggest a critical phase boundary based on the Ginzburg-Landau framework.

4 data tables

Weighted mean of corrected NBD $k$, $<k_c>$ as a function of pseudorapidity window size. The dominant sources systematic correlate with dead maps (corr.sys.(dead)) and two-track seperation cuts (corr.sys.(fake)). The total systematic error (uncorr.sys.) is the quadratic sum over all errors.

Weighted mean of corrected NBD $k$, $<k_c>$ as a function of pseudorapidity window size. The dominant sources systematic correlate with dead maps (corr.sys.(dead)) and two-track seperation cuts (corr.sys.(fake)). The total systematic error (uncorr.sys.) is the quadratic sum over all errors.

Fit results based on $k(\delta_{\eta})$=$1/{{2\alpha\xi}/{\delta_{\eta}}}$ ($\xi << \delta_{\eta}$).

More…

Measurement of direct photon production in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 012002, 2007.
Inspire Record 726259 DOI 10.17182/hepdata.143523

Cross sections for mid-rapidity production of direct photons in p+p collisions at the Relativistic Heavy Ion Collider (RHIC) are reported for 3 < p_T < 16 GeV/c. Next-to-leading order (NLO) perturbative QCD (pQCD) describes the data well for p_T > 5 GeV/c, where the uncertainties of the measurement and theory are comparable. We also report on the effect of requiring the photons to be isolated from parton jet energy. The observed fraction of isolated photons is well described by pQCD for p_T > 7 GeV/c.

3 data tables

Direct photon spectra with NLO pQCD calculations for three theory scales, $\mu$ and a comparison to the NLO pQCD calculations for $\mu$ = $p_T$.

Ratio of isolated direct photons to all direct photons from the $\pi^0$-tagging method.

Ratio of isolated direct photons to all direct photons from the $\pi^0$-tagging method.