Showing 4 of 84 results
The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.
The distribution of the missing transverse momentum is shown in hard-lepton 6-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in hard-lepton 6-jet W+jets control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in soft-lepton 2-jet ttbar control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
The distribution of the missing transverse momentum is shown in soft-lepton 2-jet W+jets control regions after normalising the ttbar and W+jets background processes in the simultaneous fit.
Expected background yields as obtained in the background-only fits in all hard-lepton and soft-lepton validation together with observed data are given. Uncertainties in the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties.
Expected background yields as obtained in the background-only fits in all hard-lepton and soft-lepton signal together with observed data are given. Uncertainties in the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties.
Distributions of mt for the hard-lepton 4-jet low-x signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of met/meff for the 4-jet high-x signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of mt for the hard-lepton 5-jet signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of mt for the hard-lepton 6-jet signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of met for the soft-lepton 2-jet signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
Distributions of met for the soft-lepton 5-jet signal region. The requirement on the variable plotted is removed from the definitions of the signal regions, where the arrow indicates the position of the cut in the signal region. The lower panels of the plots show the ratio of the observed data to the total background prediction as derived in the background-only fit. The uncertainty bands plotted include all statistical and systematic uncertainties as discussed in Section 7. The component `Others' is the sum of Z+jets and ttbar+V. The last bin includes the overflow.
The observed combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The yellow band ($+ 1 \sigma$) of the combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models. The yellow band represents the $\pm 1 \sigma$ variation of the median expected limit due to the experimental and theoretical uncertainties.
The yellow band ($- 1 \sigma$) of the combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models. The yellow band represents the $\pm 1 \sigma$ variation of the median expected limit due to the experimental and theoretical uncertainties.
The observed combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The yellow band ($+ 1 \sigma$) of the combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$. The yellow band represents the $\pm 1 \sigma$ variation of the median expected limit due to the experimental and theoretical uncertainties.
The yellow band ($- 1 \sigma$) of the combined 95% CL exclusion limits in the the gluino simplified models using for each model point the signal region with the best expected sensitivity. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$. The yellow band represents the $\pm 1 \sigma$ variation of the median expected limit due to the experimental and theoretical uncertainties.
The observed limits for the soft-lepton 2-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected limits for the soft-lepton 2-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The observed limits for the hard-lepton 4-jet low-x signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected limits for the hard-lepton 4-jet low-x signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The observed limits for the hard-lepton 5-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected limits for the hard-lepton 5-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The observed limits for the hard-lepton 6-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The expected limits for the hard-lepton 6-jet signal region. The limits are presented in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ models.
The observed limits for the soft-lepton 5-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the soft-lepton 5-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The observed limits for the hard-lepton 4-jet low-x signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the hard-lepton 4-jet low-x signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The observed limits for the hard-lepton 4-jet high-x signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the hard-lepton 4-jet high-x signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The observed limits for the hard-lepton 5-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the hard-lepton 5-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The observed limits for the hard-lepton 6-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
The expected limits for the hard-lepton 6-jet signal region. The limits are presented in the (gluino, x) plane for the chargino = 60 GeV models where $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
Number of generated events in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$.
Number of generated events in the (gluino, x) plane for the chargino = 60 GeV models.
Production cross-section in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$.
Production cross-section in the (gluino, x) plane for the chargino = 60 GeV models.
Acceptance times efficiency obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet low-x).
Acceptance times efficiency in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet high-x).
Acceptance times efficiency in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 5-jet).
Acceptance times efficiency in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 6-jet).
Acceptance times efficiency in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (soft-lepton 2-jet).
Acceptance times efficiency obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet low-x).
Acceptance times efficiency in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet high-x).
Acceptance times efficiency in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 5-jet).
Acceptance times efficiency in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 6-jet).
Acceptance times efficiency in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (soft-lepton 5-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet low-x).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet high-x).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 5-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 6-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (soft-lepton 2-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet low-x).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 4-jet high-x).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 5-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (hard-lepton 6-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$ (soft-lepton 2-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet low-x).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet high-x).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 5-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 6-jet).
The observed CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (soft-lepton 5-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet low-x).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 4-jet high-x).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 5-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (hard-lepton 6-jet).
The expected CLs values as obtained in the different signal regions in the (gluino, x) plane for the chargino = 60 GeV models (soft-lepton 5-jet).
The signal region yielding in the best expected limit is indicated for every signal point used in the the gluino simplified models for the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$.
The signal region yielding in the best expected limit is indicated for every signal point used in the the gluino simplified models for the (gluino, x) mass plane where for the chargino = 60 GeV and $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
Model-dependent 95% CL upper limits on the visible cross-section in addition to the observed and expected exclusion limits for the (gluino, chargino) mass plane for the scenario where the mass of the chargino is fixed to $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1)) = 1/2$.
Model-dependent 95% CL upper limits on the visible cross-section in addition to the observed and expected exclusion limits for the (gluino, x) mass plane where for the chargino = 60 GeV and $x=(m(\tilde\chi^\pm_1)-m(\tilde\chi^0_1))/(m(\tilde g) - m(\tilde\chi^0_1))$.
Simulated background event samples: the corresponding generator, parton shower, cross-section normalisation, PDF set and underlying-event tune are shown.
Overview of the selection criteria for the soft-lepton signal regions. The symbol $p_{T}^{l}$ refers to signal leptons.
Overview of the selection criteria for the hard-lepton signal regions. The symbol $p_{T}^{l}$ refers to signal leptons.
Background fit results for the hard-lepton and soft-lepton signal regions, for an integrated luminosity of 3.2 fb-1. Uncertainties in the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties. The uncertainties in this table are symmetrised for propagation purposes but truncated at zero to remain within the physical boundaries.
Breakdown of upper limits. The columns show from left to right: the name of the respective signal region; the 95% confidence level (CL) upper limits on the visible cross-section and on the number of signal events the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1 \sigma$ variations on the expectation) of background events; the two-sided CLb value, i.e. the confidence level observed for the background-only hypothesis and the one-sided discovery p-value (p(s = 0)). The discovery p-values are capped to 0.5 in the case of observing less events than the fitted background estimates.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the mt distribution shown in figure 5 (top left). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the met/meff distribution shown in figure 5 (top right). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the mt distribution shown in figure 5 (middle left). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the mt distribution shown in figure 5 (middle right). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the met distribution shown in figure 5 (bottom left). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Table shows the data, fitted background and expected signal event counts for a benchmark signal point in each bin of the met distribution shown in figure 5 (bottom right). The fit results are shown for an integrated luminosity of 3.2 fb-1.
Cutflow table for the hard-lepton signal regions with representative target signal models. The weighted numbers are normalized to 3.2 fb-1 and rounded to the statistical error.
Cutflow table for the hard-lepton signal regions with representative target signal models. The weighted numbers are normalized to 3.2 fb-1 and rounded to the statistical error.
Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton--proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton--proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb$^{-1}$. The search selected events with various jet multiplicities from $\ge 7$ to $\ge 10$ jets, and with various $b$-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 7ej50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 6ej80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Observed 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the pMSSM grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the pMSSM grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the pMSSM grid.
+1 sigma excursion of the expected 95% CL limit for the pMSSM grid.
-1 sigma excursion of the expected 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the 2Step grid.
Observed 95% CL limit for the 2Step grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the 2Step grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the 2Step grid.
+1 sigma excursion of the expected 95% CL limit for the 2Step grid.
-1 sigma excursion of the expected 95% CL limit for the 2Step grid.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Degree of multijet closure for signal and vaidation regions with at no b-jet requirement. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions with at least 1 b-jet. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions with at least 2 b-jets. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Summary of all 15 signal regions (post-fit).
Signal region yielding the best-expected CLs value, the best expected CLs value, and the corresponding observed CLs value for the 2Step grid.
Signal region yielding the best-expected CLs value, the best expected CLs value, and the corresponding observed CLs value for the pMSSM grid.
95% CLs observed upper limit on model cross-section for 2-step signal points for the best-expected signal region.
Performance of the 8j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.
Ratio of the reconstructed mass, computed as the most probable value of a fit to a Landau distribution convolved with a Gaussian, to the generated mass, as a function of the generated mass for stable gluino R-hadrons, along with the half-width at half maximum of the reconstructed mass distribution normalised to the generated mass.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable R-hadron mass.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass = m(gluino) - 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable chargino mass.
Total selection efficiency as a function of the stable R-hadron mass.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 10 ns.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass = m(gluino) - 100 GeV with a lifetime of 10 ns.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Total selection efficiency as a function of the stable chargino mass.
Ionisation distribution of all the CR2 tracks, and those not matched to a reconstructed muon. The two distributions are normalised to their total number of entries.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of gluino R-hadron signal, for searches for stable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for one example of chargino signal, for searches for stable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for background and data, for searches for stable particles. The expected background is shown with its total uncertainty (sum in quadrature of statistical, normalisation and systematic errors).
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of gluino R-hadron signal, for searches for metastable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of chargino signal, for searches for metastable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for background and data. The expected background is shown with its total uncertainty (sum in quadrature of statistical, normalisation and systematic errors).
Theoretical values for the cross section of gluino pairs production with their uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a light neutralino of mass 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a heavy neutralino of mass(gluino) - 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a heavy neutralino of mass(gluino) - 100 GeV.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a light neutralino of mass 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a heavy neutralino of mass(gluino) - 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a heavy neutralino of mass(gluino) - 100 GeV.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
Theoretical values for the production cross section of charginos or chargino/neutralino pairs, with their uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =1.0 ns, decaying into neutralino + pion, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =1.0 ns, decaying into neutralino + pion.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section plus its uncertainty.
dEdx ionization for data, 1 TeV gluino R-hadrons stable and decaying in 100 GeV neutralinos with a 10 ns lifetime and for charginos of 350 GeV. Tracks that fulfil all the requirements up to including the High-m_T (see Tab.1 in the paper) are considered at this stage and normalised to an integrated luminosity of 18.4 fb^-1.
Expected upper limits on the production cross section as a function of mass for stable gluino R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable gluino R-hadrons.
Theoretical values for the cross section of squark pairs production with their uncertainty.
Expected upper limits on the production cross section as a function of mass for stable sbottom R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable sbottom $R$-hadrons. Cross section IN PB.
Expected upper limits on the production cross section as a function of mass for stop R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stop R-hadrons.
Expected upper limits on the production cross section as a function of mass for stable charginos, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable charginos.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a light neutralino of mass 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a light neutralino of mass 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =15 ns, decaying to neutralino and pion, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =15 ns, decaying to neutralino and pion, in case of background only, with its 1 sigma band.
Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.
The ETmiss distribution in VR0Z.
The effective mass distribution in VR0Z.
The ETmiss distribution in VR2Z.
The effective mass distribution in VR2Z.
The ETmiss distribution in SR0noZa.
The effective mass distribution in SR0noZa.
The ETmiss distribution in SR1noZa.
The effective mass distribution in SR1noZa.
The ETmiss distribution in SR2noZa.
The effective mass distribution in SR2noZa.
The ETmiss distribution in SR0noZb.
The effective mass distribution in SR0noZb.
The ETmiss distribution in SR1noZb.
The effective mass distribution in SR1noZb.
The ETmiss distribution in SR2noZb.
The effective mass distribution in SR2noZb.
The ETmiss distribution in SR0Z.
The effective mass distribution in SR0Z.
The ETmiss distribution in SR1Z.
The effective mass distribution in SR1Z.
The ETmiss distribution in SR2Z.
The effective mass distribution in SR2Z.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV chargino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV gluino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Lslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV Rslepton NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_121 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_122 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_133 != 0.
Observed 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Expected 95% CL exclusion contour for the RPV sneutrino NLSP model with lambda_233 != 0.
Observed 95% CL exclusion contour for the R-slepton RPC model.
Expected 95% CL exclusion contour for the R-slepton RPC model.
Observed and expected 95% CL cross-section upper limits for the Stau RPC model, together with the theoretically predicted cross-section.
Observed and expected 95% CL cross-section upper limits for the Z RPC model, together with the theoretically predicted cross-section.
Observed 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Expected 95% CL exclusion contour for the GGM tan beta = 1.5 model.
Observed 95% CL exclusion contour for the GGM tan beta = 30 model.
Expected 95% CL exclusion contour for the GGM tan beta = 30 model.
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV chargino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV gluino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Lslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV Rslepton NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_121 != 0 and lambda_122 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the RPV sneutrino NLSP models with lambda_133 != 0 and lambda_233 != 0, and the selection of Z-veto signal regions used to set limits in these models. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bba' means that the regions SR0noZb, SR1noZb and SR2noZa were used, in addition to the three Z-rich regions (SR0-2Z).
Observed 95% CL cross-section upper limit for the R-slepton RPC model, and the selection of Z-veto signal regions used to set limits in this model. The combination of regions used is ordered by the minimum number of hadronic taus required. For example, ``bbb' means that the regions SR0noZb, SR1noZb and SR2noZb were used, in addition to the three Z-rich regions (SR0-2Z). For the RPC stau and Z models, the ``aaa' combination of regions was used throughout.
Performance of the SR0noZa selection in the R-slepton RPC model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0noZb selection in the RPV chargino NLSP model with lambda_121 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR1noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZa selection in the RPV sneutrino NLSP model with lambda_233 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR2noZb selection in the RPV gluino NLSP model with lambda_133 != 0: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Performance of the SR0Z selection in the GGM tan beta = 30 model: number of generated signal events; total signal cross-section; acceptance; efficiency; total experimental systematic uncertainty, not including Monte Carlo statistics; observed CL using this region alone; expected CL using this region alone.
Cut flows for a representative selection of SUSY signal points in the Z-veto signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows for a representative selection of SUSY signal points in the Z-rich signal regions. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses (or the value of mu in the case of GGM models). The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0noZa signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPC R-slepton model is used, with (m2,m1) = (450,300) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR1noZb signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the larger of the two masses. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The RPV gluino NLSP model is used, with lambda_133 != 0 and (m2,m1) = (800,400) GeV.
Cut flows by lepton channel for a representative selection of SUSY signal points in the SR0Z signal region. In each case, m2 and m1 refer to the axes of the plots in Sec. XI, where m2 is the value of mu. The number of events expected for a luminosity of 20.3 fb-1 is quoted at each step of the selection. The preselection requires four baseline leptons, at least two of which are light leptons; the signal lepton selection is made at the ``Lepton Multiplicity' stage. ``Event Cleaning' refers to the selection criteria applied to remove non-collision backgrounds and detector noise. The GGM tan beta = 30 model is used, with (m2,m1) = (200,1000) GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.