Inclusive D*+- meson cross sections and D*+- jet correlations in photoproduction at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 50 (2007) 251-267, 2007.
Inspire Record 723915 DOI 10.17182/hepdata.45640

Differential photoproduction cross sections are measured for events containing D* mesons. The data were taken with the H1 detector at the ep collider HERA and correspond to an integrated luminosity of 51.1 pb-1. The kinematic region covers small photon virtualities Q^2 < 0.01 GeV^2 and photon-proton centre-of-mass energies of 171 < W_gammap < 256 GeV. The details of the heavy quark production process are further investigated in events with one or two jets in addition to the D* meson. Differential cross sections for D* jet production are determined and the correlations between the D* meson and the jet(s) are studied. The results are compared with perturbative QCD predictions applying collinear- or kt -factorisation.

15 data tables

Integrated cross section in the visible range for inclusive D* production photoproduction.

Integrated cross section in the visible range for D*+ other jet production photoproduction.

Integrated cross section in the visible range for D* tagged dijet photoproduction.

More…

Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 715-748, 2006.
Inspire Record 718190 DOI 10.17182/hepdata.45892

A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.

22 data tables

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the complete ('all') data sample taken in 1997.

More…

Measurement of charm and beauty dijet cross sections in photoproduction at HERA using the H1 vertex detector.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 47 (2006) 597-610, 2006.
Inspire Record 716144 DOI 10.17182/hepdata.45700

A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. Events are selected with two or more jets of transverse momentum $p_t^{jet}_{1(2)}>11(8)$ GeV in the central range of pseudo-rapidity $-0.9<\eta^{jet}_{1(2)}<1.3$. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 central vertex detector. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured as a function of the transverse momentum of the leading jet, the average pseudo-rapidity of the two jets and the observable $x_{\gamma}^{obs}$. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement.

22 data tables

Total dijet CHARM cross section in the defined kinematic range.

Total dijet BOTTOM cross section in the defined kinematic range.

Measured CHARM cross section as a function of PT.

More…

Diffractive deep-inelastic scattering with a leading proton at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 749-766, 2006.
Inspire Record 718189 DOI 10.17182/hepdata.45891

The cross section for the diffractive deep-inelastic scattering process $ep \to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \xpom &lt;0.1 in fractional proton longitudinal momentum loss, 0.08 &lt; |t| &lt; 0.5 GeV^{-2} in squared four-momentum transfer at the proton vertex, 2 &lt; Q^2 &lt; 50 GeV^2 in photon virtuality and 0.004 &lt; \beta = x / \xpom &lt; 1, where x is the Bjorken scaling variable. For $\xpom \lapprox 10^{-2}$, the differential cross section has a dependence of approximately ${\rm d} \sigma / {\rm d} t \propto e^{6 t}$, independently of \xpom, \beta and Q^2 within uncertainties. The cross section is also measured triple differentially in \xpom, \beta and Q^2. The \xpom dependence is interpreted in terms of an effective pomeron trajectory with intercept $\alpha_{\pom}(0)=1.114 \pm 0.018 ({\rm stat.}) \pm 0.012 ({\rm syst.}) ^{+0.040}_{-0.020} ({\rm model})$ and a sub-leading exchange. The data are in good agreement with an H1 measurement for which the event selection is based on a large gap in the rapidity distribution of the final state hadrons, after accounting for proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q^2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.

60 data tables

No description provided.

No description provided.

No description provided.

More…

Diffractive photoproduction of rho mesons with large momentum transfer at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Phys.Lett.B 638 (2006) 422-431, 2006.
Inspire Record 712738 DOI 10.17182/hepdata.45698

The diffractive photoproduction of rho mesons, e p \to e rho Y, with large momentum transfer squared at the proton vertex, |t|, is studied with the H1 detector at HERA using an integrated luminosity of 20.1 pb^{-1}. The photon-proton centre of mass energy spans the range 75 &lt; W &lt; 95 GeV, the photon virtuality is restricted to Q^2 &lt; 0.01 GeV^2 and the mass M_Y of the proton remnant is below 5 GeV. The t dependence of the cross section is measured for the range 1.5 &lt; |t| &lt; 10.0 GeV^2 and is well described by a power law, dsigma/ d|t| \propto |t|^{-n}. The spin density matrix elements, which provide information on the helicity structure of the interaction, are extracted using measurements of angular distributions of the rho decay products. The data indicate a violation of s-channel helicity conservation, with contributions from both single and double helicity-flip being observed. The results are compared to the predictions of perturbative QCD models.

5 data tables

The normalized differential cross section as a function of T.

Normalised decay angular distribution w.r.t. the polar angle THETA.

Normalised decay angular distribution w.r.t. the polar angle THETA.

More…

Photoproduction of dijets with high transverse momenta at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Phys.Lett.B 639 (2006) 21-31, 2006.
Inspire Record 711847 DOI 10.17182/hepdata.45988

Differential dijet cross sections are measured in photoproduction in the region of photon virtualities Q^2 &lt; 1 GeV^2 with the H1 detector at the HERA ep collider using an integrated luminosity of 66.6 pb^{-1}. Jets are defined with the inclusive k_T algorithm and a minimum transverse momentum of the leading jet of 25 GeV is required. Dijet cross sections are measured in direct and resolved photon enhanced regions separately. Longitudinal proton momentum fractions up to 0.7 are reached. The data compare well with predictions from Monte Carlo event generators based on leading order QCD and parton showers and with next-to-leading order QCD calculations corrected for hadronisation effects.

15 data tables

Bin averaged cross sections for dijet photoproduction shown separately for high and low X(C=GAMMA).

Bin averaged cross sections for dijet photoproduction shown separately for high and low X(C=GAMMA) and for dijet mass > 65 GeV.

Bin averaged cross sections for dijet photoproduction shown separately for high and low XP.

More…

Measurement of event shape variables in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 46 (2006) 343-356, 2006.
Inspire Record 699835 DOI 10.17182/hepdata.11377

Deep-inelastic ep scattering data taken with the H1 detector at HERA and corresponding to an integrated luminosity of 106 pb^{-1} are used to study the differential distributions of event shape variables. These include thrust, jet broadening, jet mass and the C-parameter. The four-momentum transfer Q is taken to be the relevant energy scale and ranges between 14 GeV and 200 GeV. The event shape distributions are compared with perturbative QCD predictions, which include resummed contributions and analytical power law corrections, the latter accounting for non-perturbative hadronisation effects. The data clearly exhibit the running of the strong coupling alpha_s(Q) and are consistent with a universal power correction parameter alpha_0 for all event shape variables. A combined QCD fit using all event shape variables yields alpha_s(mZ) = 0.1198 \pm 0.0013 ^{+0.0056}_{-0.0043} and alpha_0 = 0.476 \pm 0.008 ^{+0.018} _{-0.059}.

71 data tables

Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 14.0 to 16.0 GeV and X = 0.00841 .

Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 16.0 to 20.0 GeV and X = 0.01180 .

Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 20.0 to 30.0 GeV and X = 0.02090 .

More…

First measurement of charged current cross sections at HERA with longitudinally polarised positrons.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Phys.Lett.B 634 (2006) 173-179, 2006.
Inspire Record 701216 DOI 10.17182/hepdata.46020

Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \to \bar{\nu}X, for negative four-momentum transfer squared Q^2 > 400 GeV^2 and inelasticity y&lt;0.9. Together with the corresponding cross section obtained from the previously published unpolarised data, the polarisation dependence of the charged current cross section is measured for the first time at high Q^2 and found to be in agreement with the Standard Model prediction.

1 data table

Measured cross sections.


Elastic J/psi production at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 46 (2006) 585-603, 2006.
Inspire Record 694372 DOI 10.17182/hepdata.46134

Cross sections for elastic production of J/Psi mesons in photoproduction and electroproduction are measured in electron proton collisions at HERA using an integrated luminosity of 55 pb^{-1}. Results are presented for photon virtualities Q^2 up to 80 GeV^2. The dependence on the photon-proton centre of mass energy W_{gamma p} is analysed in the range 40 < \Wgp < 305 GeV in photoproduction and 40 < \Wgp < 160 GeV in electroproduction. The \Wgp dependences of the cross sections do not change significantly with Q^2 and can be described by models based on perturbative QCD. Within such models, the data show a high sensitivity to the gluon density of the proton in the domain of low Bjorken x and low Q^2. Differential cross sections d\sigma/dt, where t is the squared four-momentum transfer at the proton vertex, are measured in the range |t|<1.2 GeV^2 as functions of \Wgp and Q^2. Effective Pomeron trajectories are determined for photoproduction and electroproduction. The J/Psi production and decay angular distributions are consistent with s-channel helicity conservation. The ratio of the cross sections for longitudinally and transversely polarised photons is measured as a function of Q^2 and is found to be described by perturbative QCD based models.

19 data tables

Cross section for elastic J/PSI photoproduction in Q**2 bins for W = 90 GeV and ABS(T) < 1.2 GeV**2.

Cross section for elastic J/PSI photoproduction in W bins for ABS(T) < 1.2 GeV**2 and Q**2 < 1 GeV**2.. There are two cross sections for the 205 to 235 GeV bin due to overlapping data sets. The mean is 151 +- 8 (DSYS=20) nb.

Cross section for elastic J/PSI photoproduction as a function of W in Q**2 bins for ABS(T) < 1.2 GeV**2.

More…

Forward jet production in deep inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 46 (2006) 27-42, 2006.
Inspire Record 690939 DOI 10.17182/hepdata.45860

The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.

7 data tables

Single differential forward jet cross section as a function of Bjorken X.

Triple differential cross section.

Triple differential cross section.

More…