Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
JHEP 02 (2020) 077, 2020.
Inspire Record 1762347 DOI 10.17182/hepdata.94314

The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval $-1.07 < y_{\rm cms} < 0.14$ and transverse momentum interval 2 $< p_{\rm T} <$ 16 GeV/$c$. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the $p_{\rm T}$ spectra measured for different multiplicity classes with those measured in pp collisions ($Q_{\rm pPb}$) and in peripheral p-Pb collisions ($Q_{\rm CP}$). The $Q_{\rm pPb}$ results obtained are consistent with unity within uncertainties in the measured $p_{\rm T}$ interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions.

13 data tables

$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions

$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions in 0--20\% centrality

$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions in 20--40\% centrality

More…

Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 804 (2020) 135377, 2020.
Inspire Record 1759860 DOI 10.17182/hepdata.93923

The differential invariant yield as a function of transverse momentum ($p_\mathrm{T}$) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0-10%), semi-central (30-50%) and peripheral (60-80%) lead-lead (Pb-Pb) collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\text{ TeV}$ in the $p_{\mathrm{T}}$ intervals 0.5-26 GeV/$c$ (0-10% and 30-50%) and 0.5-10 GeV/$c$ (60-80%). The production cross section in proton-proton (pp) collisions at $\sqrt{s}=5.02$ TeV was measured as well in $0.5<p_\mathrm{T}<10$ GeV/$c$ and it lies close to the upper band of perturbative QCD calculation uncertainties up to $p_\mathrm{T}=5$ GeV/$c$ and close to the mean value for larger $p_\mathrm{T}$. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon-nucleon collisions is evaluated by measuring the nuclear modification factor $R_{\mathrm{AA}}$. The measurement of the $R_{\mathrm{AA}}$ in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The $R_{\mathrm{AA}}$ shows a suppression with respect to unity at intermediate $p_\mathrm{T}$, which increases while moving towards more central collisions. Moreover, the measured $R_{\mathrm{AA}}$ is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low $p_\mathrm{T}$ in heavy-ion collisions at LHC.

7 data tables

HFe cross section in pp

HFe cross section in Pb-Pb, 0-10 centrality

HFe cross section in Pb-Pb, 30-50 centrality

More…