Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 04 (2022) 048, 2022.
Inspire Record 1972089 DOI 10.17182/hepdata.114361

A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.

7 data tables

Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.

More…

Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 06 (2020) 146, 2020.
Inspire Record 1772050 DOI 10.17182/hepdata.95469

The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric ($\hat{d}_\mathrm{t}$) and chromomagnetic ($\hat{\mu}_\mathrm{t}$) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The linearized variable $A_\mathrm{FB}^{(1)}$ is used to approximate the asymmetry. Candidate $\mathrm{t\bar{t}}$ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for $\mathrm{t\bar{t}}$ final states. The values found for the parameters are $A_\mathrm{FB}^{(1)} =$ 0.048 $^{+0.095}_{-0.087}$ (stat) $^{+0.020}_{-0.029}$ (syst), $\hat{\mu}_\mathrm{t} =-$ 0.024 $^{+0.013}_{-0.009}$ (stat) $^{+0.016}_{-0.011}$ (syst), and a limit is placed on the magnitude of $|\hat{d}_\mathrm{t}|$ $<$ 0.03 at 95% confidence level.

3 data tables

Linearized top quark forward-backward production asymmetry $A_{FB}^{(1)}$

Top quark anomalous chromomagnetic dipole moment $\hat{\mu}_{t}$

Top quark anomalous chromoelectric dipole moment $\hat{d}_{t}$


Version 2
Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with e$\mu\mu$ or $\mu\mu\mu$ in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 123 (2019) 131802, 2019.
Inspire Record 1735729 DOI 10.17182/hepdata.89938

A search for a light charged Higgs boson (H$^+$) decaying to a W boson and a CP-odd Higgs boson (A) in final states with e$\mu\mu$ or $\mu\mu\mu$ is performed using data from pp collisions at $\sqrt{s}=$ 13 TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. In this search, it is assumed that the H$^+$ boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for H$^+$ boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the H$^+$ boson is found. Upper limits at 95% confidence level are obtained on the combined branching fraction for the decay chain t $\to$ bH$^+$ $\to$ bW$^+$A $\to$ bW$^+\mu^+\mu^-$, of 1.9 $\times$ 10$^{-6}$ to 8.6 $\times$ 10$^{-6}$, depending on the masses of the H$^+$ and A bosons. These are the first limits for these decay modes of the H$^+$ and A bosons.

4 data tables

Expected and observed upper limits at 95% CL on the branching fraction of the top quark, $\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})$, for the A boson masses ($\mathit{m}_{\mathrm{A}}$), with an assumption of the $\mathrm{H^{+}}$ boson mass $\mathit{m}_{\mathrm{H^{+}}}=\mathit{m}_{\mathrm{A}}$+85 GeV. In the calculation, the $t\overline{t}$ production cross section is set to 832 pb, and the branching fractions $\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ and $\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})$ are assumed to be $3\times10^{-4}$ and 1, respectively.

Expected and observed upper limits at 95% CL on $\mathcal{B}_{sig}=\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ for the A boson masses ($\mathit{m}_{\mathrm{A}}$). The $\mathrm{H^{+}}$ boson mass is assumed to be $\mathit{m}_{\mathrm{A}}$+85 GeV in the calculation.

Expected and observed upper limits at 95% CL on the branching fraction of the top quark, $\mathcal{B}(\mathrm{t}\to\mathrm{b}\mathrm{H^{+}})$, for the A boson masses ($\mathit{m}_{\mathrm{A}}$), with an assumption of the $\mathrm{H^{+}}$ boson mass $\mathit{m}_{\mathrm{H^{+}}}$ = 160 GeV. In the calculation, the $t\overline{t}$ production cross section is set to 832 pb, and the branching fractions $\mathcal{B}(\mathrm{A}\to\mu^{+}\mu^{-})$ and $\mathcal{B}(\mathrm{H^{+}}\to\mathrm{W^{+}}\mathrm{A})$ are assumed to be $3\times10^{-4}$ and 1, respectively.

More…