Search for W' bosons decaying to a top and a bottom quark at $\sqrt{s} =$13 TeV in the hadronic final state

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 820 (2021) 136535, 2021.
Inspire Record 1857809 DOI 10.17182/hepdata.102392

A search is performed for W' bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137 fb$^{-1}$. Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Both left- and right-handed W' bosons with masses below 3.4 TeV are excluded at 95% confidence level, and the most stringent limits to date on W' bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained.

8 data tables

The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.

The reconstructed m$_{tb}$ distributions in data and expected background in validation region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.

The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2017. Yield in each bin is divided by the corresponding bin width.

More…

Search for contact interactions and large extra dimensions in the dilepton mass spectra from proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2019) 114, 2019.
Inspire Record 1711231 DOI 10.17182/hepdata.89049

A search for nonresonant excesses in the invariant mass spectra of electron and muon pairs is presented. The analysis is based on data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment in 2016, corresponding to a total integrated luminosity of 36 fb$^{-1}$. No significant deviation from the standard model is observed. Limits are set at 95% confidence level on energy scales for two general classes of nonresonant models. For a class of fermion contact interaction models, lower limits ranging from 20 to 32 TeV are set on the characteristic compositeness scale $\Lambda$. For the Arkani-Hamed, Dimopoulos, and Dvali model of large extra dimensions, the first results in the dilepton final state at 13 TeV are reported, and values of the ultraviolet cutoff parameter $\Lambda_\mathrm{T}$ below 6.9 TeV are excluded. A combination with recent CMS diphoton results improves this exclusion to $\Lambda_\mathrm{T}$ below 7.7 TeV, providing the most sensitive limits to date in nonhadronic final states.

12 data tables

Electron pair invariant mass spectra for the combined barrel-barrel and barrel-endcap event categories. Example model predictions are given for CI. The lower panel shows the relative difference between the data and predicted background. The gray band gives the fractional uncertainty (statistical and systematic) in the prediction.

Muon pair invariant mass spectra for the combined barrel-barrel and barrel-endcap event categories. Example model predictions are given for the ADD model. The lower panel shows the relative difference between the data and predicted background. The gray band gives the fractional uncertainty (statistical and systematic) in the prediction.

Dilepton exclusion limits at 95% CL on the CI scale (Lambda) for the six CI models considered for the electron channel. The limits are obtained for m > 400(2200) GeV in the case of constructive (destructive) interference.

More…

Search for a heavy composite Majorana neutrino in the final state with two leptons and two quarks at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 775 (2017) 315-337, 2017.
Inspire Record 1607793 DOI 10.17182/hepdata.80512

A search for physics beyond the standard model in the final state with two same-flavour leptons (electrons or muons) and two quarks produced in proton-proton collisions at sqrt(s) = 13 TeV is presented. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 2.3 inverse femtobarns. The observed data are in good agreement with the standard model background prediction. The results of the measurement are interpreted in the framework of a recently proposed model in which a heavy Majorana neutrino, N(l), stems from a composite-fermion scenario. Exclusion limits are set for the first time on the mass of the heavy composite Majorana neutrino, m[N(l)], and the compositeness scale Lambda. For the case m[N(l)] = Lambda, the existence of N(e) (N(mu)) is excluded for masses up to 4.60 (4.70) TeV at 95% confidence level.

6 data tables

Invariant mass distribution of two electrons and one large-radius jet. The events are selected accordingly to the signal region slection in the electron channel described in the paper.

Invariant mass distribution of two muons and one large-radius jet. The events are selected accordingly to the signal region slection in the muon channel described in the paper.

95% CL upper limits on the product of the production cross section $\sigma(pp\to N_e)$ and the branching ratio $B(N_e \to e q \bar{q}^{\prime})$ in electron channel, compared with theoretical predictions for HCMN model calculated with CalcHEP.

More…