System size and energy dependence of near-side di-hadron correlations

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 85 (2012) 014903, 2012.
Inspire Record 943192 DOI 10.17182/hepdata.77720

Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.

40 data tables

Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.

The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.

Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.

More…

Scaling violations of quark and gluon jet fragmentation functions in e+ e- annihilations at s**(1/2) = 91.2-GeV and 183-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 37 (2004) 25-47, 2004.
Inspire Record 648738 DOI 10.17182/hepdata.74689

Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.

11 data tables

The udsc jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig.7.

The b jet fragmentation function in bins of $x_{\rm E}$ and scale. The scale denotes $Q_{\rm jet}$ for the biased jets and is given by the intervals, while it denotes $\sqrt{s}/2$ for the unbiased jets and is given by the single values. These data are displayed in Fig. 8. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-70 GeV, no measurement was possible due to low statistics.

The gluon jet fragmentation functions in bins of $x_{\rm E}$ and scale $Q_{\rm jet}$ obtained from the biased jets using the b-tag method (BT). These data are displayed in Fig. 9. In the region 0.48 $<x_{\rm E}<$ 0.90 and $Q_{\rm jet}=$ 30-42 GeV for the b-tag method, no measurement was possible due to low statistics.

More…

Disappearance of the Mach Cone in heavy ion collisions

Nattrass, Christine ; Sharma, Natasha ; Mazer, Joel ; et al.
Phys.Rev.C 94 (2016) 011901, 2016.
Inspire Record 1466814 DOI 10.17182/hepdata.73675

We present an analysis of di-hadron correlations using recently developed methods for background subtraction which allow for higher precision measurements with fewer assumptions about the background. These studies indicate that low momentum jets interacting with the medium do not equilibrate with the medium, but rather that interactions with the medium lead to more subtle increases in their widths and fragmentation functions, consistent with observations from studies of higher momentum fully reconstructed jets. The away-side shape is not consistent with a Mach cone.

13 data tables

Background subtracted dihadron correlations with 4 $< p_T^{t} <$ 6 GeV/$c$ for 1.5 $< p_T^{a} <$ 2.0 GeV/$c$ in d+Au and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV in bins of the trigger particle relative to the reaction plane. Statistical uncertainties are nontrivially correlate point to point.

Background subtracted dihadron correlations with 4 $< p_T^{t} <$ 6 GeV/$c$ for 2.0 $< p_T^{a} <$ 3.0 GeV/$c$ in d+Au and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV in bins of the trigger particle relative to the reaction plane. Statistical uncertainties are nontrivially correlate point to point.

Background subtracted dihadron correlations with 4 $< p_T^{t} <$ 6 GeV/$c$ for 3.0 $< p_T^{a} <$ 4.0 GeV/$c$ in d+Au and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV in bins of the trigger particle relative to the reaction plane. Statistical uncertainties are nontrivially correlate point to point.

More…

Near-side azimuthal and pseudorapidity correlations using neutral strange baryons and mesons in d+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 94 (2016) 014910, 2016.
Inspire Record 1429700 DOI 10.17182/hepdata.73657

We present measurements of the near-side of triggered di-hadron correlations using neutral strange baryons ($\Lambda$, $\bar{\Lambda}$) and mesons ($K^0_S$) at intermediate transverse momentum (3 $<$ $p_T$ $<$ 6 GeV/$c$) to look for possible flavor and baryon/meson dependence. This study is performed in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations due to jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.

11 data tables

Corrected 2D $K_S^0$ correlation function for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and 1.5 GeV/$c$ < $p_T^{associated}$ < $p_T^{trigger}$ for 0-20% Cu+Cu. The data have been reflected about $\Delta\eta$ = 0 and $\Delta\phi$ = 0.

Corrected correlation functions $\frac{dN_{J}}{d\Delta\eta}$ in $\mid$$\Delta\eta$$\mid<$ 0.78 for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and 1.5 GeV/$c$ < $p_T^{associated}$ < $p_T^{trigger}$ for (a) $\Lambda$-h and (b) $K_S^0$-h for minimum bias $d$+Au, 0-20% Cu+Cu, and 40-80% Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV after background subtraction. The data have been reflected about $\Delta\eta$ = 0.

$\Lambda$/$K^0_S$ ratio measured in the jet-like correlation in 0-60% Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV for 3 < $p_T^{trigger}$ < 6 GeV/$c$ and \assocrange{2.0}{3.0} along with this ratio obtained from inclusive $p_T$ spectra in \pp collisions.

More…

Charged-to-neutral correlation at forward rapidity in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 91 (2015) 034905, 2015.
Inspire Record 1311834 DOI 10.17182/hepdata.73610

Event-by-event fluctuations of the ratio of inclusive charged to photon multiplicities at forward rapidity in Au+Au collision at $\sqrt{s_{NN}}$=200 GeV have been studied. Dominant contribution to such fluctuations is expected to come from correlated production of charged and neutral pions. We search for evidences of dynamical fluctuations of different physical origins. Observables constructed out of moments of multiplicities are used as measures of fluctuations. Mixed events and model calculations are used as baselines. Results are compared to the dynamical net-charge fluctuations measured in the same acceptance. A non-zero statistically significant signal of dynamical fluctuations is observed in excess to the model prediction when charged particles and photons are measured in the same acceptance. We find that, unlike dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated by correlation due to particle decay. Results are compared to the expectations based on the generic production mechanism of pions due to isospin symmetry, for which no significant (<1%) deviation is observed.

21 data tables

Multiplicity distributions of raw charged particles and photons.

The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for real events. $\omega_{ch}^{real}$ is plotted.

The $v_{dyn}$ and the three terms of $v_{dyn}$ vs $\sqrt{\langle N_{ch}\rangle \langle N_{\gamma}\rangle }$ for mixed events. $\omega_{ch}^{mixed}$ is plotted.

More…

Measurements of Dielectron Production in Au$+$Au Collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV from the STAR Experiment

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 92 (2015) 024912, 2015.
Inspire Record 1357992 DOI 10.17182/hepdata.73504

We report on measurements of dielectron ($e^+e^-$) production in Au$+$Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of transverse momentum ($p_{\rm T}$) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region ($M_{ee}<$ 1 GeV/$c^2$). This enhancement cannot be reproduced by the $\rho$-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30 $-$ 0.76 GeV/$c^2$, integrated over the full $p_{\rm T}$ acceptance, the enhancement factor is 1.76 $\pm$ 0.06 (stat.) $\pm$ 0.26 (sys.) $\pm$ 0.29 (cocktail). The enhancement factor exhibits weak centrality and $p_{\rm T}$ dependence in STAR's accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44 $\pm$ 0.10. Models that assume an in-medium broadening of the $\rho$ meson spectral function consistently describe the observed excess in these measurements. Additionally, we report on measurements of $\omega$ and $\phi$-meson production through their $e^+e^-$ decay channel. These measurements show good agreement with Tsallis Blast-Wave model predictions as well as, in the case of the $\phi$-meson, results through its $K^+K^-$ decay channel. In the intermediate invariant-mass region (1.1$<M_{ee}<$ 3 GeV/$c^2$), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.

50 data tables

Estimated electron purity vs. momentum in 200 GeV Au + Au collisions.

Acceptance correction factor for unlike-sign and like-sign pair difference from 200 GeV Au+Au minimum-bias collisions.

Ratio of the same-event like-sign to the mixed event unlike-sign distributions.

More…

Di-Hadron Correlations with Identified Leading Hadrons in 200 GeV Au+Au and d+Au Collisions at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 751 (2015) 233-240, 2015.
Inspire Record 1322126 DOI 10.17182/hepdata.73458

The STAR collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the \emph{ridge region}, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

14 data tables

Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for charged hadron triggers from minimum-bias d+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.

Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for charged hadron triggers from 0-10% most-central Au+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.

Two-dimensional $\Delta\phi$ vs. $\Delta\eta$ correlation functions for non-pion triggers from minimum-bias d+Au data at 200 GeV. All trigger and associated charged hadrons are selected in the respective pT ranges 4 < $p_T^{trig}$ < 5 GeV/c and 1.5 < $p_T^{assoc}$ < 4 GeV/c.

More…

Effect of event selection on jetlike correlation measurement in $d$+Au collisions at $\sqrt{s_{\rm{NN}}}=200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 743 (2015) 333-339, 2015.
Inspire Record 1335765 DOI 10.17182/hepdata.73235

Dihadron correlations are analyzed in $\sqrt{s_{_{\rm NN}}} = 200$ GeV $d$+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.

16 data tables

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3). Shown is the low FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the away side (|$\Delta\phi$ - $\pi$| < $\pi$/3. Shown is the high FTPC-Au activity data. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

The dihadron correlated yield normalized per radian per unit of pseudorapidity as function of $\Delta\eta$ in d+Au collisions on the near (|$\Delta\phi$| < $\pi$/3) side. Shown is the high-activity data after subtracting the unscaled. Trigger and associated particles have 1 < $p_T$ < 3 GeV/c and |$\eta$| < 1.

More…