Measurement of inclusive two-particle angular correlations in pp collisions with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 05 (2012) 157, 2012.
Inspire Record 1094061 DOI 10.17182/hepdata.59818

We present a measurement of two-particle angular correlations in proton-proton collisions at sqrt(s) = 900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum pT > 100 MeV and pseudorapidity |eta| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to Pythia 8 and Herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of Pythia 6. The data are not satisfactorily described by any of these models.

5 data tables

Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between 0 and PI.

Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between 0 and PI/2.

Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between PI/2 and PI.

More…

Measurement of the azimuthal anisotropy for charged particle production in sqrt(s_NN) = 2.76 TeV lead-lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 86 (2012) 014907, 2012.
Inspire Record 1093733 DOI 10.17182/hepdata.59488

Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 mb^-1. This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle (phi), with the coefficients v_n denoting the magnitude of the anisotropy. Significant v_2-v_6 values are obtained as a function of transverse momentum (0.5<pT<20 GeV), pseudorapidity (|eta|<2.5) and centrality using an event plane method. The v_n values for n>=3 are found to vary weakly with both eta and centrality, and their pT dependencies are found to follow an approximate scaling relation, v_n^{1/n}(pT) \propto v_2^{1/2}(pT). A Fourier analysis of the charged particle pair distribution in relative azimuthal angle (Dphi=phi_a-phi_b) is performed to extract the coefficients v_{n,n}=<cos (n Dphi)>. For pairs of charged particles with a large pseudorapidity gap (|Deta=eta_a-eta_b|>2) and one particle with pT<3 GeV, the v_{2,2}-v_{6,6} values are found to factorize as v_{n,n}(pT^a,pT^b) ~ v_n(pT^a)v_n(pT^b) in central and mid-central events. Such factorization suggests that these values of v_{2,2}-v_{6,6} are primarily due to the response of the created matter to the fluctuations in the geometry of the initial state. A detailed study shows that the v_{1,1}(pT^a,pT^b) data are consistent with the combined contributions from a rapidity-even v_1 and global momentum conservation. A two-component fit is used to extract the v_1 contribution. The extracted v_1 is observed to cross zero at pT\sim1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v_3, and decreases at higher pT.

209 data tables

The EP Resolution Factor vs. Centrality for n values from2 to 6.

The Chi Reolution Factor vs. Centrality for n values from 2 to 6.

The one-dimensional Delta(PHI) correlation function vs Delta(PHI) for |DETARAP| in the range 2 to 5 summed over all n values from 1 to 6.

More…

Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 719 (2013) 220-241, 2013.
Inspire Record 1126965 DOI 10.17182/hepdata.59270

Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at $\sqrt{s_{NN}}$ = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |$\eta$| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-$k_t$ algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," $R_{cp}$. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. $R_{cp}$ varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.

73 data tables

Glauber model calculation of the mean numbers of Npart and its associated errors, the mean Ncoll ratios, and Rcoll with fractional errors as a function of the centrality bins.

The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 0 - 10 %.

The Rcp values as a function of jet PT for the four R values, 0.2, 0.3, 0.4 and 0.5 for the collision centrality in the range 10 - 20 %.

More…

Measurement of Z boson Production in Pb+Pb Collisions at sqrt(s_NN)=2.76 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.Lett. 110 (2013) 022301, 2013.
Inspire Record 1193044 DOI 10.17182/hepdata.60336

The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 inverse nb of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt(s_NN)=2.76 TeV. The Z bosons are reconstructed via di-electron and di-muon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.

10 data tables

The corrected per-event rapidity distribution of Z bosons over the centrality region 0-80%.

The corrected per-event transverse momentum distribution of Z bosons in the centrality region 0-5%.

The corrected per-event transverse momentum distribution of Z bosons in the centrality region 5-10%.

More…

Measurement of the inclusive jet cross section in pp collisions at sqrt(s)=2.76 TeV and comparison to the inclusive jet cross section at sqrt(s)=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 73 (2013) 2509, 2013.
Inspire Record 1228693 DOI 10.17182/hepdata.61627

The inclusive jet cross-section has been measured in proton-proton collisions at sqrt(s)=2.76 TeV in a dataset corresponding to an integrated luminosity of 0.20pb-1 collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-kt algorithm with two radius parameters of 0.4 and 0.6. The inclusive jet double-differential cross-section is presented as a function of the jet transverse momentum pT and jet rapidity y, covering a range of 20 <= pT < 430 GeV and |y| < 4.4. The ratio of the cross-section to the inclusive jet cross-section measurement at sqrt(s)=7 TeV, published by the ATLAS Collaboration, is calculated as a function of both transverse momentum and the dimensionless quantity xT = 2 pT / sqrt(s), in bins of jet rapidity. The systematic uncertainties on the ratios are significantly reduced due to the cancellation of correlated uncertainties in the two measurements. Results are compared to the prediction from next-to-leading order perturbative QCD calculations corrected for non-perturbative effects, and next-to-leading order Monte Carlo simulation. Furthermore, the ATLAS jet cross-section measurements at sqrt(s)=2.76 TeV and sqrt(s)=7 TeV are analysed within a framework of next-to-leading order perturbative QCD calculations to determine parton distribution functions of the proton, taking into account the correlations between the measurements.

42 data tables

The measured inclusive jet double-differential cross section in the rapidity bin |y| < 0.3 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

The measured inclusive jet double-differential cross section in the rapidity bin 0.3 <= |y| < 0.8 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

The measured inclusive jet double-differential cross section in the rapidity bin 0.8 <= |y| < 1.2 for anti-kt jets with R = 0.4 as a function of the jet PT. The first (sys) error is the combined correlated systematic error and the second the combined uncorrelated systematic error, excluding the luminosity uncertainty. Also shown are the multiplicative non-perturbative corrections, NPcorr.

More…

Measurement of the distributions of event-by-event flow harmonics in lead--lead collisions at sqrt(s_NN)=2.76 TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 11 (2013) 183, 2013.
Inspire Record 1233359 DOI 10.17182/hepdata.62783

The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5<pT<1 GeV and pT>1 GeV. When these distributions are rescaled to the same mean values, the adjusted shapes are found to be nearly the same for these two pT ranges. The v_n distributions are compared with the eccentricity distributions from two models for the initial collision geometry: a Glauber model and a model that includes corrections to the initial geometry due to gluon saturation effects. Both models fail to describe the experimental data consistently over most of the measured centrality range.

201 data tables

The relationship between centrality intervals and MEAN(Npart) estimated from the Glauber model.

The MEAN(Npart) dependence of MEAN(V2) for three pT ranges together with the total systematic uncertainties.

The MEAN(Npart) dependence of SIGMA(V2) for three pT ranges together with the total systematic uncertainties.

More…

Measurement of the Azimuthal Angle Dependence of Inclusive Jet Yields in Pb+Pb Collisions at sqrt(s(NN))= 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.Lett. 111 (2013) 152301, 2013.
Inspire Record 1240088 DOI 10.17182/hepdata.78150

Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Delta phi, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Delta phi dependence of jet yields in 0.14 nb^-1 of sqrt(s(NN))= 2.76 TeV Pb+Pb collisions at the LHC for jet transverse momenta p_T > 45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Delta phi was characterized by the parameter, v_2^jet, and the ratio of out-of-plane (Delta phi ~ pi/2) to in-plane (Delta phi ~ 0) yields. Non-zero v_2^jet values were measured in all centrality bins for p_T < 160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.

10 data tables

jet v2 vs jet pT for 5 to 10% centrality

jet v2 vs jet pT for 10 to 20% centrality

jet v2 vs jet pT for 20 to 30% centrality

More…

Measurement of event-plane correlations in sqrt(s_NN)=2.76 TeV lead-lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 90 (2014) 024905, 2014.
Inspire Record 1283339 DOI 10.17182/hepdata.66137

A measurement of event-plane correlations involving two or three event planes of different order is presented as a function of centrality for 7 ub-1 Pb+Pb collision data at sqrt(s_NN)=2.76 TeV, recorded by the ATLAS experiment at the LHC. Fourteen correlators are measured using a standard event-plane method and a scalar-product method, and the latter method is found to give a systematically larger correlation signal. Several different trends in the centrality dependence of these correlators are observed. These trends are not reproduced by predictions based on the Glauber model, which includes only the correlations from the collision geometry in the initial state. Calculations that include the final-state collective dynamics are able to describe qualitatively, and in some cases also quantitatively, the centrality dependence of the measured correlators. These observations suggest that both the fluctuations in the initial geometry and non-linear mixing between different harmonics in the final state are important for creating these correlations in momentum space.

28 data tables

Two-plane EP correlation data from SP method and EP method.

Two-plane EP correlation from Glauber model from SP method and EP method.

Two-plane EP correlation data from SP method and EP method.

More…

Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at sqrt(s_NN)=2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 2982, 2014.
Inspire Record 1296260 DOI 10.17182/hepdata.66180

The integrated elliptic flow of charged particles produced in Pb+Pb collisions at sqrt(s_NN)=2.76 TeV has been measured with the ATLAS detector using data collected at the Large Hadron Collider. The anisotropy parameter, v_2, was measured in the pseudorapidity range |eta| <= 2.5 with the event-plane method. In order to include tracks with very low transverse momentum pT, thus reducing the uncertainty in v_2 integrated over pT, a 1 mu b-1 data sample without a magnetic field in the tracking detectors is used. The centrality dependence of the integrated v_2 is compared to other measurements obtained with higher pT thresholds. A weak pseudorapidity dependence of the integrated elliptic flow is observed for central collisions, and a small decrease when moving away from mid-rapidity is observed only in peripheral collisions. The integrated v2 transformed to the rest frame of one of the colliding nuclei is compared to the lower-energy RHIC data.

38 data tables

Monte Carlo evaluation of the tracklet reconstruction efficiency as a function of pseudorapidity for the 0-10% centraliry interval.

Monte Carlo evaluation of the tracklet reconstruction efficiency as a function of pseudorapidity for the 40-50% centraliry interval.

Monte Carlo evaluation of the tracklet reconstruction efficiency as a function of pseudorapidity for the 70-80% centraliry interval.

More…

Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at sqrt(s_NN) = 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 739 (2014) 320-342, 2014.
Inspire Record 1300152 DOI 10.17182/hepdata.64272

Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.

80 data tables

Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.3 jets. The errors represent combined statistical and systematic uncertainties.

Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.2 jets. The errors represent combined statistical and systematic uncertainties.

D(z) distribution for R=0.4 jets.

More…

Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3157, 2014.
Inspire Record 1311487 DOI 10.17182/hepdata.65771

ATLAS measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_{NN}}=2.76$ TeV are shown using a dataset of approximately 7 $\mu$b$^{-1}$ collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta $0.5<p_T<20$ GeV and in the pseudorapidity range $|\eta|<2.5$. The anisotropy is characterized by the Fourier coefficients, $v_n$, of the charged-particle azimuthal angle distribution for n = 2-4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the $v_n$ coefficients are presented. The elliptic flow, $v_2$, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, $v_3$ and $v_4$, are determined with two- and four-particle cumulants. Flow harmonics $v_n$ measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to $v_n$ measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.

220 data tables

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 0-2%.

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 2-5%.

The second flow harmonic measured with the two-particle cumulants as a function of transverse momentum in centrality bin 5-10%.

More…

Measurement of the production and lepton charge asymmetry of $\textit{W}$ bosons in Pb+Pb collisions at $\sqrt{s_{\mathrm{\mathbf{NN}}}}=$ 2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 23, 2015.
Inspire Record 1311623 DOI 10.17182/hepdata.66358

A measurement of $\textit{W}$ boson production in lead-lead collisions at $\sqrt{s_{\mathrm{NN}}}=$2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 $\mathrm{nb}^{-1}$ and 0.15 $\mathrm{nb}^{-1}$ in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons $< N_{\mathrm{part}} >$ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of $\textit{W}$ boson production in multi-nucleon systems.

5 data tables

Ratio of W+ and W- candidates in $W\rightarrow \ell \nu_{\ell}$ as a function of the mean number of participants $N_{part}$.

$W^\pm$ boson production yield per binary collision as a function of the mean number of participants $N_{part}$.

Differential production yield per binary collision for $W^{+}$ bosons as a function of $|\eta_\ell|$.

More…

Measurement of long-range pseudorapidity correlations and azimuthal harmonics in $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV proton-lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 90 (2014) 044906, 2014.
Inspire Record 1315325 DOI 10.17182/hepdata.66357

Measurements of two-particle correlation functions and the first five azimuthal harmonics, $v_1$ to $v_5$, are presented, using 28 $\mathrm{nb}^{-1}$ of $p$+Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV measured with the ATLAS detector at the LHC. Significant long-range "ridge-like" correlations are observed for pairs with small relative azimuthal angle ($|\Delta\phi|<\pi/3$) and back-to-back pairs ($|\Delta\phi| > 2\pi/3$) over the transverse momentum range $0.4 < p_{\rm T} < 12$ GeV and in different intervals of event activity. The event activity is defined by either the number of reconstructed tracks or the total transverse energy on the Pb-fragmentation side. The azimuthal structure of such long-range correlations is Fourier decomposed to obtain the harmonics $v_n$ as a function of $p_{\rm T}$ and event activity. The extracted $v_n$ values for $n=2$ to 5 decrease with $n$. The $v_2$ and $v_3$ values are found to be positive in the measured $p_{\rm T}$ range. The $v_1$ is also measured as a function of $p_{\rm T}$ and is observed to change sign around $p_{\rm T}\approx 1.5$-2.0 GeV and then increase to about 0.1 for $p_{\rm T}>4$ GeV. The $v_2(p_{\rm T})$, $v_3(p_{\rm T})$ and $v_4(p_{\rm T})$ are compared to the $v_n$ coefficients in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}} =2.76$ TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average $p_{\rm T}$ of particles produced in the two collision systems.

92 data tables

The distributions of $N_{ch}^{rec}$ for MB and MB+HMT after applying an event-by-event weight, errors are statistical.

The distributions of $E_{T}^{Pb}$ [GeV] for MB and MB+HMT after applying an event-by-event weight, errors are statistical.

Per-trigger yield in 2D, $Y$($\Delta\phi$,$\Delta\eta$), for events with $E_{T}^{Pb} <$ 10 GeV and $N_{ch}^{rec} \geq$ 200 and recoil-subtracted per-trigger yield, $Y^{sub}$($\Delta\phi$,$\Delta\eta$) for events with $N_{ch}^{rec} \geq$ 200. Errors are statistical.

More…

Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 072302, 2015.
Inspire Record 1326911 DOI 10.17182/hepdata.66021

Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\mathrm{pb}^{-1}$ and 0.14 $\mathrm{nb}^{-1}$, respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\mathrm{AA}}$ shows a slight increase with $p_{\mathrm{T}}$ and no significant variation with rapidity.

46 data tables

The $\langle T_{\mathrm{AA}} \rangle $ and $\langle N_{\mathrm{part}} \rangle$ values and their uncertainties in each centrality bin.

No description provided.

No description provided.

More…

Two-particle Bose-Einstein correlations in $pp$ collisions at $\mathbf {\sqrt{s} =}$ 0.9 and 7 TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 466, 2015.
Inspire Record 1346844 DOI 10.17182/hepdata.70016

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

24 data tables

Systematic uncertainties on $\lambda$ and $R$ for the exponential fit of the two-particle double-ratio correlation function $R_{2}(Q)$ in the full kinematic region at $\sqrt{s} = 0.9$ and $7\ TeV$ for minimum-bias and high-multiplicity (HM) events, $n_{ch} \ge 2$ and $n_{ch} \ge 150$, respectively.

Results of fitting the multiplicity, $n_{ch}$, dependence of the BEC parameters $R$ and $\lambda$ with different functional forms for $\sqrt{s} = 0.9$ and $7\ TeV$. The $n_{ch}$ fit of $R(n_{ch})$ is applied to $7\ TeV$ minimum-bias events at $n_{ch} \le 55$ and to $0.9\ TeV$ minimum-bias events. The constant fit of $R(n_{ch} )$ is applied to $7\ TeV$ minimum-bias events for $n_{ch} > 55$ and to $7\ TeV$ high-multiplicity events. The exponential fit of $\lambda(n_{ch})$ is applied to $7\ TeV$ minimum-bias and high-multiplicity events.The error represent the quadratic sum of the statistical and systematic uncertainties.

Results of fitting the transverse momentum of the pair, $k_{T}$, dependence of the BEC parameters $R$ and $\lambda$ with the exponential fitting function for $\sqrt{s} = 0.9$ and $7\ TeV$. The error represent the quadratic sum of the statistical and systematic uncertainties.

More…

Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{NN}}$=2.76 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 92 (2015) 034903, 2015.
Inspire Record 1357991 DOI 10.17182/hepdata.68950

Correlations between the elliptic or triangular flow coefficients $v_m$ ($m$=2 or 3) and other flow harmonics $v_n$ ($n$=2 to 5) are measured using $\sqrt{s_{NN}}=2.76$ TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated lumonisity of 7 $\mu$b$^{-1}$. The $v_m$-$v_n$ correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, $v_3$ is found to be anticorrelated with $v_2$ and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities $\epsilon_2$ and $\epsilon_3$. On the other hand, it is observed that $v_4$ increases strongly with $v_2$, and $v_5$ increases strongly with both $v_2$ and $v_3$. The trend and strength of the $v_m$-$v_n$ correlations for $n$=4 and 5 are found to disagree with $\epsilon_m$-$\epsilon_n$ correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to $v_n$ and a nonlinear term that is a function of $v_2^2$ or of $v_2v_3$, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to $v_4$ and $v_5$ are found to be consistent with previously measured event-plane correlations.

212 data tables

$v_{2}$ data for various $q_2$ bins, Centrality 0-5%.

$v_{3}$ data for various $q_2$ bins, Centrality 0-5%.

$v_{4}$ data for various $q_2$ bins, Centrality 0-5%.

More…

Version 2
Measurement of charged-particle spectra in Pb+Pb collisions at $\sqrt{{s}_\mathsf{{NN}}} = 2.76$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2015) 050, 2015.
Inspire Record 1360290 DOI 10.17182/hepdata.67531

Charged-particle spectra obtained in 0.15 nb${}^{-1}$ of Pb+Pb interactions at $\sqrt{{s}_\mathsf{{NN}}}=2.76$TeV and 4.2 pb${}^{-1}$ of pp interactions at $\sqrt{s}=2.76$ TeV with the ATLAS detector at the LHC are presented in a wide transverse momentum ($0.5 < p_{\mathrm{T}} < 150$ GeV) and pseudorapidity ($|\eta|<2$) range. For Pb+Pb collisions, the spectra are presented as a function of collision centrality, which is determined by the response of the forward calorimeter located on both sides of the interaction point. The nuclear modification factors $R_{\mathrm{AA}}$ and $R_{\mathrm{CP}}$ are presented in detail as function of centrality, $p_{\mathrm{T}}$ and $\eta$. They show a distinct $p_{\mathrm{T}}$-dependence with a pronounced minimum at about 7 GeV. Above 60 GeV, $R_{\mathrm{AA}}$ is consistent with a plateau at a centrality-dependent value, within the uncertainties. The value is $0.55\pm0.01(stat.)\pm0.04(syst.)$ in the most central collisions. The $R_{\mathrm{AA}}$ distribution is consistent with flat $|\eta|$ dependence over the whole transverse momentum range in all centrality classes.

121 data tables

Charged-particle spectra for pp.

Charged-particle spectra in different centrality intervals for Pb+Pb.

Charged-particle spectra in different centrality intervals for Pb+Pb (not shown in Fig. 10).

More…

Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at $\sqrt{s} = 2.76$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 756 (2016) 10-28, 2016.
Inspire Record 1407478 DOI 10.17182/hepdata.71195

The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb$^{-1}$ of $\sqrt{s} = 2.76$ TeV $pp$ collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.

34 data tables

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +2.1 < eta^dijet < +2.8.

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +1.2 < eta^dijet < +2.1.

Mean value of the sum of the transverse energy in -4.9 < eta < -3.2 in pp collisions, <SumET>. Reported as a function of dijet pT^avg, shown here for +0.8 < eta^dijet < +1.2.

More…

Measurement of internal structure of jets in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 2.76$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 379, 2017.
Inspire Record 1511869 DOI 10.17182/hepdata.77789

The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb$^{-1}$ of Pb+Pb data and 4.0 pb$^{-1}$ of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet $p_{\mathrm{T}}$ and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.

81 data tables

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 2.1.

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 0.3.

D(pt) distributions for pp and Pb+Pb collisions, jet rapidity 0.3 < |y| < 0.8.

More…

Measurement of multi-particle azimuthal correlations in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 428, 2017.
Inspire Record 1599077 DOI 10.17182/hepdata.77996

Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in $pp$ collisions at $\sqrt{s}$ = 5.02 and 13 TeV and in $p$+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in $p$+Pb and low-multiplicity Pb+Pb collisions. On the other hand, the $pp$ results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb+Pb, smaller in $p$+Pb and smallest in $pp$ collisions. The $pp$ results show no dependence on the collision energy, nor on the multiplicity.

95 data tables

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pp collisions at $\sqrt{s}$= 5.02 TeV.

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pp collisions at $\sqrt{s}$= 13 TeV.

$c_2\{4\}$ cumulants for reference particles with 0.3 $< p_T <$ 3.0 GeV selected according to $M_{ref}$ (EvSel_$M_{ref}$) for pPb collisions at $\sqrt{ s_{NN} }$= 5.02 TeV.

More…

Correlated long-range mixed-harmonic fluctuations measured in $pp$, $p$+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 789 (2019) 444-471, 2019.
Inspire Record 1681154 DOI 10.17182/hepdata.83969

Correlations of two flow harmonics $v_n$ and $v_m$ via three- and four-particle cumulants are measured in 13 TeV $pp$, 5.02 TeV $p$+Pb, and 2.76 TeV peripheral Pb+Pb collisions with the ATLAS detector at the LHC. The goal is to understand the multi-particle nature of the long-range collective phenomenon in these collision systems. The large non-flow background from dijet production present in the standard cumulant method is suppressed using a method of subevent cumulants involving two, three and four subevents separated in pseudorapidity. The results show a negative correlation between $v_2$ and $v_3$ and a positive correlation between $v_2$ and $v_4$ for all collision systems and over the full multiplicity range. However, the magnitudes of the correlations are found to depend strongly on the event multiplicity, the choice of transverse momentum range and collision system. The relative correlation strength, obtained by normalisation of the cumulants with the $\langle v_n^2\rangle$ from a two-particle correlation analysis, is similar in the three collision systems and depends weakly on the event multiplicity and transverse momentum. These results based on the subevent methods provide strong evidence of a similar long-range multi-particle collectivity in $pp$, $p$+Pb and peripheral Pb+Pb collisions.

60 data tables

The symmetric cumulant $sc_{2,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pp collisions at $\sqrt{s_{NN}}$ = 13 TeV

The symmetric cumulant $sc_{2\,3}\{4\}$ results as a function of multiplicity ($N_{ch}$) in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

More…

Measurement of $W^{\pm}$-boson and $Z$-boson production cross-sections in $pp$ collisions at $\sqrt{s}=2.76$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 901, 2019.
Inspire Record 1742785 DOI 10.17182/hepdata.91267

The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.

28 data tables

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.

More…