Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

1 data table match query

Predicted cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $1.56<|\eta^{\gamma}|<1.81$ and isolation cone radius $0.2$ at NNLO QCD.


Version 2
Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 063, 2022.
Inspire Record 2037744 DOI 10.17182/hepdata.134011

Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than $355$ GeV and the other top quark decays into $\ell \nu b$ are presented using 139 fb$^{-1}$ of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at $\sqrt{s}=13$ TeV is measured to be $\sigma = 1.267 \pm 0.005 \pm 0.053$ pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of $4.2\%$. The cross-section is measured differentially as a function of variables characterising the $t\bar{t}$ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to set limits on the Wilson coefficients of the dimension-six operators $O_{tG}$ and $O_{tq}^{(8)}$ in the effective field theory framework.

1 data table match query

Relative differential cross-section as a function of $H_T^{t\bar{t}}$ at particle level in the boosted topology. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.


Version 2
Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 737, 2021.
Inspire Record 1853014 DOI 10.17182/hepdata.100351

Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.

2 data tables match query

The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.


Version 2
Measurement of hadronic event shapes in multijet final states at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 01 (2021) 188, 2021.
Inspire Record 1808726 DOI 10.17182/hepdata.91998

A measurement of event-shape variables in proton$-$proton collisions at large momentum transfer is presented using data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb$^{-1}$. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed.

4 data tables match query

Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 4 and $H_{\textrm{T2}}$ > 2.0 TeV.

Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}$ = 4 and $H_{\textrm{T2}}$ > 2.0 TeV.

Measured relative cross sections for multijet production as a function of T$_{\textrm{m}}$ for $n^{\textrm{jet}}\geq$ 4 and $H_{\textrm{T2}}$ > 2.0 TeV.

More…

Measurements of inclusive and differential cross-sections of combined $t\bar{t}\gamma$ and $tW\gamma$ production in the $e\mkern-2mu\mu$ channel at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 09 (2020) 049, 2020.
Inspire Record 1806806 DOI 10.17182/hepdata.94915

Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton$-$proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is $b$-tagged, are selected. The fiducial cross-section is measured to be $39.6\,^{+2.7}_{-2.3}\,\textrm{fb}$. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.

1 data table match query

The statistical correlation matrix of all the absolute differential cross-sections measured in the fiducial phase-space in the electron-muon channel.


Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in $pp$ collisions at $\sqrt{s}=13~\textrm{TeV}$ using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 01 (2021) 033, 2021.
Inspire Record 1801434 DOI 10.17182/hepdata.103063

Differential cross-sections are measured for top-quark pair production in the all-hadronic decay mode, using proton$-$proton collision events collected by the ATLAS experiment in which all six decay jets are separately resolved. Absolute and normalised single- and double-differential cross-sections are measured at particle and parton level as a function of various kinematic variables. Emphasis is placed on well-measured observables in fully reconstructed final states, as well as on the study of correlations between the top-quark pair system and additional jet radiation identified in the event. The study is performed using data from proton$-$proton collisions at $\sqrt{s}=13~\mbox{TeV}$ collected by the ATLAS detector at CERN's Large Hadron Collider in 2015 and 2016, corresponding to an integrated luminosity of $\mbox{36.1 fb}^{-1}$. The rapidities of the individual top quarks and of the top-quark pair are well modelled by several independent event generators. Significant mismodelling is observed in the transverse momenta of the leading three jet emissions, while the leading top-quark transverse momentum and top-quark pair transverse momentum are both found to be incompatible with several theoretical predictions.

1 data table match query

Covariance matrix of the relative differential cross-section as function of $p_{T}^{t,1}$ at particle level in the all hadronic resolved topology, accounting for the statistical and systematic uncertainties.


Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

2 data tables match query

R_AA for peripheral (60-80%) Au+Au collisions at 200 GeV for R = 0.2, 0.3, and 0.4 for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric). In addition, the systematic uncertainty for the T_AA normalization (29%) and PYTHIA reference (22%, 20%, 18% for R = 0.2, 0.3 and 0.4) have to be added.

R_AA for central (0-10%) Au+Au collisions at 200 GeV for R = 0.2, 0.3, and 0.4 for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric). In addition, the systematic uncertainty for the T_AA normalization (7%) and PYTHIA reference (22%, 20%, 18% for R = 0.2, 0.3 and 0.4) have to be added. The unbiased data points are the 4 highest for R=0.2 and 3 highest for R=0.3 and 0.4, resp.


Measurement of isolated-photon plus two-jet production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 179, 2020.
Inspire Record 1772071 DOI 10.17182/hepdata.101751

The dynamics of isolated-photon plus two-jet production in $pp$ collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb$^{-1}$. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, $\gamma+jet+jet$. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from SHERPA and PYTHIA as well as the next-to-leading-order QCD predictions from SHERPA are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.

1 data table match query

Measured cross sections for isolated-photon plus two-jet production as functions of $\Delta y^{\gamma-\textrm{jet}}$ for the direct-enriched phase-space. The predictions from Sherpa NLO are also included.


Measurements of top-quark pair differential and double-differential cross-sections in the $\ell$+jets channel with $pp$ collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 1028, 2019.
Inspire Record 1750330 DOI 10.17182/hepdata.95758

Single- and double-differential cross-section measurements are presented for the production of top-quark pairs, in the lepton + jets channel at particle and parton level. Two topologies, resolved and boosted, are considered and the results are presented as a function of several kinematic variables characterising the top and $t\bar{t}$ system and jet multiplicities. The study was performed using data from $pp$ collisions at centre-of-mass energy of 13 TeV collected in 2015 and 2016 by the ATLAS detector at the CERN Large Hadron Collider (LHC), corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$. Due to the large $t\bar{t}$ cross-section at the LHC, such measurements allow a detailed study of the properties of top-quark production and decay, enabling precision tests of several Monte Carlo generators and fixed-order Standard Model predictions. Overall, there is good agreement between the theoretical predictions and the data.

1 data table match query

Covariance matrix of the Relative differential cross-section as function of $p_{T}^{t\bar{t}}$ at particle level in the resolved topology, accounting for the statistical and systematic uncertainties.


Measurement of fiducial and differential $W^+W^-$ production cross-sections at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 884, 2019.
Inspire Record 1734263 DOI 10.17182/hepdata.89225

A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.

1 data table match query

Measured normalized fiducial cross-section of $WW\rightarrow e\mu$ production for the observable $p_\text{T}^{\text{lead }\ell}$.