This paper reports the measurement of J/psi meson production in proton-proton (pp) and proton-lead (pPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28 inverse picobarns and 35 inverse nanobarns for pp and pPb collisions, respectively. Prompt and nonprompt J/psi mesons, the latter produced from the decay of B mesons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of 2 < pt < 30 GeV/c, and center-of-mass rapidity ranges of abs(y[CM]) < 2.4 (pp) and -2.87 < y[CM] < 1.93 (pPb). The nuclear modification factor, R[pPb], is measured as functions of both pt and y[CM]. Small modifications of the J/psi cross sections are observed in pPb relative to pp collisions. The ratio of J/psi production cross sections in p-going and Pb-going directions, R[FB], studied as functions of pt and y[CM], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt J/psi production.
Jets containing a prompt J$/\psi$ meson are studied in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using the CMS detector at the LHC. Jets are selected to be in the transverse momentum range of 30 $\lt$$p_\mathrm{T}$$\lt$ 40 GeV. The J$/\psi$ yield in these jets is evaluated as a function of the jet fragmentation variable $z$, the ratio of the J$/\psi$$p_\mathrm{T} $ to the jet $p_\mathrm{T}$. The nuclear modification factor, $R_\mathrm{AA}$, is then derived by comparing the yield in lead-lead collisions to the corresponding expectation based on proton-proton data, at the same nucleon-nucleon center-of-mass energy. The suppression of the J$/\psi$ yield shows a dependence on $z$, indicating that the interaction of the J$/\psi$ with the quark-gluon plasma formed in heavy ion collisions depends on the fragmentation that gives rise to the J$/\psi$ meson.
The differential cross sections of $\Lambda_\mathrm{c}^+$ baryon production are measured via the exclusive decay channel $\Lambda_\mathrm{c}^+ \to $pK$^-\pi^+$, as a function of transverse momentum ($p_\mathrm{T}$) in proton-proton (pp) and lead-lead (PbPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC. The measurement is performed within the $\Lambda_\mathrm{c}^+$ rapidity interval $|y|<$1.0 in the $p_\mathrm{T}$ range of 5-20 GeV/$c$ in pp and 10-20 GeV/$c$ in PbPb collisions. The observed yields of $\Lambda_\mathrm{c}^+$ for $p_\mathrm{T}$ of 10-20 GeV/$c$ suggest a possible suppression in central PbPb collisions compared to pp collisions. The $\Lambda_\mathrm{c}^+/$D$^0$ production ratio in pp collisions is compared to theoretical models. In PbPb collisions, this ratio is consistent with the result from pp collisions in their common $p_\mathrm{T}$ range.
The production cross sections of B$^0_\mathrm{s}$ mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel B$^0_\mathrm{s}$ $\to$ $\mu^+\mu^-$K$^+$K$^-$ at a centre-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range $|y|$ $\lt$ 2.4 using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p$_\mathrm{T}$) of the B$^0_\mathrm{s}$ meson in the range of 7 to 50 GeV/$c$ and is compared to the predictions of perturbative QCD calculations. The B$^0_\mathrm{s}$ production yield in PbPb collisions is measured in two p$_\mathrm{T}$ intervals, 7 to 15 and 15 to 50 GeV/$c$, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor ($R_\mathrm{AA}$) is found to be 1.5 $\pm$ 0.6 (stat) $\pm$ 0.5 (syst) for 7-15 GeV/$c$, and 0.87 $\pm$ 0.30 (stat) $\pm$ 0.17 (syst) for 15-50 GeV/$c$, respectively. Within current uncertainties, the results are consistent with models of strangeness enhancement and a suppression as observed for the B$^+$ mesons.
The transverse momentum ($p_{\rm T}$) differential cross section of the charm-strange baryon $\Xi^0_{\rm c}$ is measured at midrapidity ($|y|<$ 0.5) via its semileptonic decay into ${\rm e^{+}}\Xi^{-}\nu_{\rm e}$ in pp collisions at $\sqrt{s}$ = 5.02 TeV with the ALICE detector at the LHC. The ratio of the $p_{\rm T}$-differential $\Xi^0_{\rm c}$-baryon and ${\rm D^0}$-meson production cross sections is also reported. The measurements are compared with simulations with different tunes of the PYTHIA 8 event generator, with predictions from a statistical hadronisation model (SHM) with a largely augmented set of charm-baryon states beyond the current lists of the Particle Data Group, and with models including hadronisation via quark coalescence. The $p_{\rm T}$-integrated cross section of prompt $\Xi^0_{\rm c}$-baryon production at midrapidity is also reported, which is used to calculate the baryon-to-meson ratio $\Xi^0_{\rm c}/{\rm D^0} = 0.20 \pm 0.04~{\rm (stat.)} ^{+0.08}_{-0.07}~{\rm (syst.)}$. These results provide an additional indication of a modification of the charm fragmentation from $\rm e^+e^-$ and $\rm e^{-}p$ collisions to pp collisions.
Measurements of prompt $\psi$(2S) meson production cross sections in proton-lead (pPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{_\mathrm{NN}}}=$ 5.02 TeV are reported. The results are based on pPb and pp data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 34.6 nb$^{-1}$ and 28.0 pb$^{-1}$, respectively. The nuclear modification factor $R_\mathrm{pPb}$ is measured for prompt $\psi$(2S) in the transverse momentum range 4 $<$ p$_\mathrm{T}$ $<$ 30 GeV$/c$ and the center-of-mass rapidity range $-$2.4 $< y_\mathrm{cm} <$ 1.93. The results on $\psi$(2S) $R_\mathrm{pPb}$ are compared to the corresponding modification factor for prompt J$/\psi$ mesons and are found to be more suppressed than the J$/\psi$ states over the entire kinematic range studied.
Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.
An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.
We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations --- none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.
We report the first results of elliptic ($v_2$), triangular ($v_3$) and quadrangular flow ($v_4$) of charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region $|\eta|<0.8$ and for the transverse momentum range $0.2<p_{\rm T}<5$ GeV/$c$. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multi-particle cumulant method. Compared to results from Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV, the anisotropic flow coefficients $v_{2}$, $v_{3}$ and $v_{4}$ are found to increase by ($3.0\pm0.6$)%, ($4.3\pm1.4$)% and ($10.2\pm3.8$)%, respectively, in the centrality range 0-50%. This increase can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This comparison provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further discriminate between various possibilities for the temperature dependence of shear viscosity to entropy density ratio of the produced matter in heavy-ion collisions at the highest energies.