Beam energy dependence of net-$\Lambda$ fluctuations measured by the STAR experiment at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 024903, 2020.
Inspire Record 1776194 DOI 10.17182/hepdata.113523

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$\Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $\Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$\Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

35 data tables

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 19.6 GeV. Values are shown with NBD, Poisson and UrQMD predictions. Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 27 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 39 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

More…

Incident energy dependence of p(t) correlations at RHIC.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 72 (2005) 044902, 2005.
Inspire Record 681688 DOI 10.17182/hepdata.102946

We present results for two-particle transverse momentum correlations, <dpt,i dpt,j>, as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

8 data tables

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 20 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 62 GeV for the 5% most central collisions.

Average transverse momentum per event for Au+Au at $\sqrt{s_{NN}}$ = 130 GeV for the 5% most central collisions.

More…

Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at $\sqrt{s_{\rm NN}}$ = 62 and 200 GeV

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 86 (2012) 064902, 2012.
Inspire Record 927960 DOI 10.17182/hepdata.101346

We present two-dimensional (2D) two-particle angular correlations on relative pseudorapidity $\eta$ and azimuth $\phi$ for charged particles from Au-Au collisions at $\sqrt{s_{\rm NN}} = 62$ and 200 GeV with transverse momentum $p_t \geq 0.15$ GeV/$c$, $|\eta| \leq 1$ and $2\pi$ azimuth. Observed correlations include a {same-side} (relative azimuth $< \pi/2$) 2D peak, a closely-related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until mid-centrality where a transition to a qualitatively different centrality trend occurs within a small centrality interval. Above the transition point the number of same-side and away-side correlated pairs increases rapidly {relative to} binary-collision scaling, the $\eta$ width of the same-side 2D peak also increases rapidly ($\eta$ elongation) and the $\phi$ width actually decreases significantly. Those centrality trends are more remarkable when contrasted with expectations of jet quenching in a dense medium. Observed centrality trends are compared to {\sc hijing} predictions and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy ion collision scenarios which invoke rapid parton thermalization. On the other hand, if the collision system is effectively opaque to few-GeV partons the observations reported here would be inconsistent with a minijet picture.

21 data tables

FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).

FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).

FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).

More…

Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 784 (2018) 26-32, 2018.
Inspire Record 1669807 DOI 10.17182/hepdata.100168

New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient \vone, are presented for transverse momenta $\mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $\mathrm{\sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $\mathrm{\sqrt{s_{_{NN}}}}$, centrality and $\mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $\mathrm{p_T}$ dependencies of $\mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $\mathrm{v_3}$, could serve as constraints for initial-state models. The $\mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.

5 data tables

$v_{11}$ vs. $p_{T}^{b}$ for several selections of $p_{T}^{a}$ for 0-5 central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. The curve shows the result of the simultaneous fit.

Extracted values of $v^{even}_{1}$ vs. $p_{T}$ for 0-10 central Au+Au collisions for several values of $\sqrt{s_{_{NN}}}$ as indicated; the $v^{even}_{1}$ values are obtained via fits. The curve in panel (a) shows the result from a viscous hydrodynamically based predictions.

(a) Centrality dependence of $v^{even}_{1}$ for $0.4 \lt p_{T} \lt 0.7$ GeV/c for Au+Au collisions at $\sqrt{s_{_{NN}}} = 200, 39$ and $19.6$ GeV; (b) $K$ vs. $\langle N_{ch} \rangle^{-1}$ for the $v^{even}_{1}$ values shown in (a). The $\langle N_{ch} \rangle$ values correspond to the centrality intervals indicated in panel (a).

More…

Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 054908, 2010.
Inspire Record 830676 DOI 10.17182/hepdata.98577

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.

19 data tables

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, before corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Reversed Full Field.

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, before corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Full Field.

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, after corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Reversed Full Field.

More…

Proton-Proton Interactions and Onset of Deconfinement

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Anticic, T. ; et al.
Phys.Rev.C 102 (2020) 011901, 2020.
Inspire Record 1772241 DOI 10.17182/hepdata.95182

The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.

12 data tables

K+/PI+ at y=0.

K+/PI+ at y=0.

<K+>/<PI+>.

More…

HYPERON PRODUCTION IN P P INTERACTIONS AT S**(1/2) = 53-GEV AND 62-GEV

Erhan, S. ; Lockman, William S. ; Meyer, T. ; et al.
Phys.Lett.B 85 (1979) 447-451, 1979.
Inspire Record 146771 DOI 10.17182/hepdata.5503

Inclusive measurements of Λ 0 , Λ 0 , Ξ − , Σ(1385) ± ) production in the forward direction at the CERN intersecting storage rings are presented. A signal for simulataneous Λ 0 Λ 0 production is also observed with total x > 0.6, 2.3 < M Λ Λ < 2.5 GeV and with a cross section of (1.7 ± 0.2) μb.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Exclusive electroproduction of J/psi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 695 (2004) 3-37, 2004.
Inspire Record 647777 DOI 10.17182/hepdata.46277

The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been studied with the ZEUS detector at HERA for virtualities of the exchanged photon in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton centre-of-mass energy was in the range 30<W<220 GeV and the squared four-momentum transfer at the proton vertex |t|<1.The cross sections and decay angular distributions are presented as functions of Q^2, W and t. The effective parameters of the Pomeron trajectory are in agreement with those found in J/psi photoproduction. The spin-density matrix elements, calculated from the decay angular distributions, are consistent with the hypothesis of s-channel helicity conservation. The ratio of the longitudinal to transverse cross sections, sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed. The results are in agreement with perturbative QCD calculations and exhibit a strong sensitivity to the gluon distribution in the proton.

20 data tables

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 0.15 to 0.18 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 2 to 5 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 5 to 10 GeV**2.

More…

Energy Dependence of $K/\pi$, $p/\pi$, and $K/p$ Fluctuations in Au+Au Collisions from $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV

The STAR collaboration Abdelwahab, N.M. ; Adamczyk, L. ; Adkins, J.K. ; et al.
Phys.Rev.C 92 (2015) 021901, 2015.
Inspire Record 1322965 DOI 10.17182/hepdata.72254

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.

1 data table

$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.


Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…