Evidence for exclusive gamma-gamma to W+ W- production and constraints on anomalous quartic gauge couplings at sqrt(s) = 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2016) 119, 2016.
Inspire Record 1448100 DOI 10.17182/hepdata.74707

A search for exclusive or quasi-exclusive gamma gamma to W+W- production, via pp to p(*) W+W- p(*) to p(*) mu+/- e-/+ at sqrt(s) = 8 TeV, is reported using data corresponding to an integrated luminosity of 19.7 inverse femtobarns. Events are selected by requiring the presence of an electron-muon pair with large transverse momentum pt(mu+/- e-/+) > 30 GeV, and no associated charged particles detected from the same vertex. The 8 TeV results are combined with the previous 7 TeV results (obtained for 5.05 inverse femtobarns of data). In the signal region, 13 (2) events are observed over an expected background of 3.9 +/- 0.6 (0.84 +/-0.15) events for 8 (7) TeV, resulting in a combined excess of 3.4 standard deviations over the background-only hypothesis. The observed yields and kinematic distributions are compatible with the standard model prediction for exclusive and quasi-exclusive gamma gamma to W+W- production. Upper limits on the anomalous quartic gauge coupling operators a[W;0,C] (dimension-6) and f[M0,1,2,3] (dimension-8), the most stringent to date, are derived from the measured dilepton transverse momentum spectrum.

1 data table

8 TeV cross section multiplied by branching fraction to opposite-sign mue final states, corrected for all experimental efficiencies and extrapolated to the full phase space.


Search for two Higgs bosons in final states containing two photons and two bottom quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 052012, 2016.
Inspire Record 1431986 DOI 10.17182/hepdata.77003

A search is presented for the production of two Higgs bosons in final states containing two photons and two bottom quarks. Both resonant and nonresonant hypotheses are investigated. The analyzed data correspond to an integrated luminosity of 19.7 inverse femtobarns of proton-proton collisions at sqrt(s) = 8 TeV collected with the CMS detector. Good agreement is observed between data and predictions of the standard model (SM). Upper limits are set at 95% confidence level on the production cross section of new particles and compared to the prediction for the existence of a warped extra dimension. When the decay to two Higgs bosons is kinematically allowed, assuming a mass scale Lambda[R] = 1 TeV for the model, the data exclude a radion scalar at masses below 980 GeV. The first Kaluza-Klein excitation mode of the graviton in the RS1 Randall-Sundrum model is excluded for masses between 325 and 450 GeV. An upper limit of 0.71 pb is set on the nonresonant two-Higgs-boson cross section in the SM-like hypothesis. Limits are also derived on nonresonant production assuming anomalous Higgs boson couplings.

3 data tables

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown. Observed and expected 95% CL upper limits on the product of cross section and the branching fraction sigma(pp->X)*B(X->HH) obtained through a combination of the two event categories. The limits for mX = 400 GeV are shown for both Low mass and High mass signal extraction methods.

Observed and expected 95% CL upper limits on the product of cross section and the branching fraction sigma(pp->X)*B(X->HH->gamma gamma b b ) for the nonresonant BSM analysis, performed by changing the parameters $kappa_$lambda, y_t and c_2 while keeping all other parameters fixed at the SM predictions.

Signal efficiencies in the four different signal regions for the nonresonant BSM analysis, performed by changing the parameters $kappa_$lambda, y_t and c_2 while keeping all other parameters fixed at the SM predictions. The four signal regions are made in b-tag and m_HH categries, being those: "Low-purity, High-mass" (LPHM), "Low-purity, Low-mass" (LPLM), "High-purity, High-mass" (HPHM) and "High-purity, Low-mass" (HPLM).


Measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV and limits on anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 760 (2016) 448-468, 2016.
Inspire Record 1423069 DOI 10.17182/hepdata.74458

A measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV is presented, using data corresponding to an integrated luminosity of 19.6 inverse femtobarns collected with the CMS detector at the LHC. This measurement is based on the observation of events with large missing energy and with a single photon with transverse momentum above 145 GeV and absolute pseudorapidity in the range |eta| < 1.44. The measured Z gamma to nu nu-bar gamma production cross section, 52.7 +/- 2.1(stat) +/- 6.4 (syst) +/- 1.4 (lumi) fb, agrees well with the standard model prediction of 50.0 +2.4 -2.2 fb. A study of the photon transverse momentum spectrum yields the most stringent limits to date on the anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings.

2 data tables

Z gamma -> nu nu gamma production cross section.

One-dimensional 95% CL limits on ZVgamma anomalous trilinear gauge couplings from the Z gamma -> nu nu gamma channel.


Observation of top quark pairs produced in association with a vector boson in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 01 (2016) 096, 2016.
Inspire Record 1396140 DOI 10.17182/hepdata.69486

Measurements of the cross sections for top quark pairs produced in association with a W or Z boson are presented, using 8 TeV pp collision data corresponding to an integrated luminosity of 19.5 inverse femtobarns, collected by the CMS experiment at the LHC. Final states are selected in which the associated W boson decays to a charged lepton and a neutrino or the Z boson decays to two charged leptons. Signal events are identified by matching reconstructed objects in the detector to specific final state particles from ttW or ttZ decays. The ttW cross section is measured to be 382 +117 -102 fb with a significance of 4.8 standard deviations from the background-only hypothesis. The ttZ cross section is measured to be 242 +65 -55 fb with a significance of 6.4 standard deviations from the background-only hypothesis. These measurements are used to set bounds on five anomalous dimension-six operators that would affect the ttW and ttZ cross sections.

6 data tables

Expected yields after the final fit, compared to the observed data for OS t$\bar{\mathrm{t}}$Z final states. Here ``hf'' and ``lf'' stand for heavy and light flavors, respectively.

Expected yields after the final fit, compared to the observed data for SS t$\bar{\mathrm{t}}$W final states. The multiboson process includes WWW, WWZ, and W$^{\pm}$W$^{\pm}$; t$\mathrm{\bar{t}}$+X includes t$\mathrm{\bar{t}}\gamma$, t$\mathrm{\bar{t}}\gamma^{*}$, and t$\bar{\mathrm{t}}$WW.

Expected yields after the final fit, compared to the observed data for 3$\ell$ t$\bar{\mathrm{t}}$W and three and 4$\ell$ t$\bar{\mathrm{t}}$Z final states. The 4$\ell$ ``Z-veto'' channel has exactly one lepton pair consistent with a Z boson decay; the ``Z'' channel has two. The multiboson process includes WWW and WWZ; t$\mathrm{\bar{t}}$+X includes t$\mathrm{\bar{t}}\gamma$, t$\mathrm{\bar{t}}\gamma^{*}$, and t$\bar{\mathrm{t}}$WW.

More…

Search for neutral MSSM Higgs bosons decaying to $\mu^{+} \mu^{-}$ in pp collisions at $ \sqrt{s} =$ 7 and 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 752 (2016) 221-246, 2016.
Inspire Record 1386854 DOI 10.17182/hepdata.70526

A search for neutral Higgs bosons predicted in the minimal supersymmetric standard model (MSSM) for mu+ mu- decay channels is presented. The analysis uses data collected by the CMS experiment at the LHC in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.3 inverse femtobarns, respectively. The search is sensitive to Higgs bosons produced through the gluon fusion process or in association with a bb quark pair. No statistically significant excess is observed in the mu+ mu- mass spectrum. Results are interpreted in the framework of several benchmark scenarios, and the data are used to set an upper limit on the MSSM parameter tan(beta) as a function of the mass of the pseudoscalar A boson in the range from 115 to 300 GeV. Model independent upper limits are given for the product of the cross section and branching fraction for gluon fusion and b quark associated production. They are the most stringent limits obtained to date in this channel.

3 data tables

The 95% CL upper limit on tan B as a function of mA, after combining the data from the two event categories at the two centre-of-mass energies (7 and 8 TeV). The results are obtained in the framework of the mh-mod+ benchmark scenario.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to b quark associated production, obtained using data collected at swrt(s) = 8 TeV.

The 95% CL limit on the product of the cross section and the decay branching fraction to two muons as a function of mPHI, obtained from a model independent analysis of the data. The results refer to gluon-fusion production, obtained using data collected at swrt(s) = 8 TeV.


Angular analysis of the decay B0 to K*0 mu mu from pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 424-448, 2016.
Inspire Record 1385600 DOI 10.17182/hepdata.17057

The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.

2 data tables

The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.

The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.


Comparison of the Z/gamma*+jets to gamma+jets cross sections in pp collisions at sqrt(s)= 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2015) 128, 2015.
Inspire Record 1372730 DOI 10.17182/hepdata.72989

A comparison of the differential cross sections for the processes Z/gamma* + jets and photon (gamma) + jets is presented. The measurements are based on data collected with the CMS detector at sqrt(s) = 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The differential cross sections and their ratios are presented as functions of pt. The measurements are also shown as functions of the jet multiplicity. Differential cross sections are obtained as functions of the ratio of the Z/gamma* pt to the sum of all jet transverse momenta and of the ratio of the Z/gamma* pt to the leading jet transverse momentum. The data are corrected for detector effects and are compared to simulations based on several QCD calculations.

14 data tables

The Z boson differential transverse momentum cross-section in an inclusive $Z/\gamma^{*}+\mathrm{jets}$, $N_{\mathrm{jets}} \geq1$ selection.

The $\gamma$ differential transverse momentum cross-section in an inclusive $\gamma+\mathrm{jets}$, $N_{\mathrm{jets}} \geq1$ selection for central rapidities $\vert y_{\gamma} \vert > 1.4$.

The Z boson differential transverse momentum cross-section in an inclusive $Z/\gamma^{*}+\mathrm{jets}$, $N_{\mathrm{jets}} \geq2$ selection.

More…

Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2015) 144, 2015.
Inspire Record 1357982 DOI 10.17182/hepdata.70736

A search for a heavy Higgs boson in the H to WW and H to ZZ decay channels is reported. The search is based upon proton-proton collision data samples corresponding to an integrated luminosity of up to 5.1 inverse femtobarns at sqrt(s) = 7 TeV and up to 19.7 inverse femtobarns at sqrt(s) = 8 TeV, recorded by the CMS experiment at the CERN LHC. Several final states of the H to WW and H to ZZ decays are analyzed. The combined upper limit at the 95% confidence level on the product of the cross section and branching fraction exclude a Higgs boson with standard model-like couplings and decays in the range 145 < m[H] < 1000 GeV. We also interpret the results in the context of an electroweak singlet extension of the standard model.

5 data tables

Upper limits at 95\% CL on the cross section for a heavy Higgs boson decaying to a pair of W bosons as a function of its mass and its width relative to a SM-like Higgs boson.

Upper limits at 95\% CL on the cross section for a heavy Higgs boson decaying to a pair of Z bosons as a function of its mass and its width relative to a SM-like Higgs boson.

Upper limits at 95% CL on the cross section for a heavy Higgs boson as a function of its mass and its width relative to a SM-like Higgs boson. Both, gluon-gluon fusion and VBF production processes are combined, assuming a SM-like ratio between the two.

More…

Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 91 (2015) 052009, 2015.
Inspire Record 1340084 DOI 10.17182/hepdata.66764

A search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 inverse femtobarns. In a search for narrow resonances that couple to quark-quark, quark-gluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude: string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalar diquarks below 4.7 TeV; W' bosons below 1.9 TeV or between 2.0 and 2.2 TeV; Z' bosons below 1.7 TeV; and Randall-Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. The first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.

10 data tables

Inclusive dijet mass spectrum from wide jets (points) compared to a fit (solid curve) and to predictions including detector simulation of multijet events and signal resonances. The predicted multijet shape (QCD MC) has been scaled to the data (see text). The vertical error bars are statistical only and the horizontal error bars are the bin widths. For comparison,the signal distributions for a W resonance of mass 1900 GeV and an excited quark of mass 3.6 TeV are shown. The bin-by-bin fit residuals scaled to the statistical uncertainty of the data , (data - fit)/$\sigma_{data}$, are shown at the bottom and compared with the expected signal contributions.

Observed 95% CL upper limits on $\sigma B A$ for narrow qq, qg, and gg resonances, from the inclusive analysis for signal masses between 1.2 and 5.5 TeV.

Observed 95% CL upper limits on $\sigma B A$ for narrow gg/bb, qq/bb, and bg resonances from the b-enriched analysis, for signal masses between 1.2 and 4.0 TeV. The upper limits are given for different ratios $f_{bb}$ for gg/bb and qq/bb resonances, and for 100% branching fraction into bg.

More…

Measurement of the cross section ratio sigma(t t-bar b b-bar) / sigma(t t-bar jj) in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 746 (2015) 132-153, 2015.
Inspire Record 1328962 DOI 10.17182/hepdata.67150

The first measurement of the cross section ratio $\sigma_\mathrm{ t \bar{t} b \bar{b}} / \sigma_\mathrm{ t \bar{t} jj }$ is presented using a data sample corresponding to an integrated luminosity of 19.6 fb$^{-1}$ collected in pp collisions at $\sqrt{s}$ = 8 TeV with the CMS detector at the LHC. Events with two leptons ($\mathrm{e}$ or $\mu$) and four reconstructed jets, including two identified as b quark jets, in the final state are selected. The ratio is determined for a minimum jet transverse momentum $p_\mathrm{T}$ of both 20 and 40 GeV/$c$. The measured ratio is 0.022 $\pm$ 0.003 (stat) $\pm$ 0.005 (syst) for $p_\mathrm{T}$ greater than 20 GeV/$c$. The absolute cross sections $\sigma_\mathrm{ t \bar{t} b \bar{b}}$ and $\sigma_\mathrm{ t \bar{t} jj }$ are also measured. The measured ratio for $p_\mathrm{T}$ greater than 40 GeV/$c$ is compatible with a theoretical quantum chromodynamics calculation at next-to-leading order.

3 data tables

The number of events for each physics process and for each dilepton category after fitting to the data, their total, and the observed total number of events. The results are after the final event selection. The $Z/\gamma^* \to \ell\ell$ uncertainty is from data, while all other uncertainties include only the statistical uncertainties in the MC samples.

Summary of the systematic uncertainties from various sources contributing to $\sigma_{t\bar{t}b\bar{b}}$, $\sigma_{t\bar{t}jj}$, and the ratio $\sigma_{t\bar{t}b\bar{b}/t\bar{t}jj}$ for a jet pt threshold of $p_{\rm T}$ > 20 GeV in the visible phase space.

The measured cross sections $\sigma_{t\bar{t}b\bar{b}}$ and $\sigma_{t\bar{t}jj}$ and their ratio are given for the visible phase space (PS) defined as two leptons with $p_{\rm T}$ > 20 GeV and $|\eta|$ < 2.4 plus four jets, including two b jets with $p_{\rm T}$ > 20 GeV and $|\eta|$ < 2.5, and the full phase space, corrected for acceptance and branching fractions. The full phase-space results are given for jet thresholds of $p_{\rm T}$ > 20 and 40 GeV. The predictions of a NLO theoretical calculation for the full phase space and $p_{\rm T}$ > 40 GeV are also given.