The forward-backward asymmetry of quarks produced in e+e− annihilations, summed over all flavors, is measured at √s between 50 and 60.8 GeV. Methods of determining the charge direction of jet pairs are discussed. The asymmetry is found to agree with the five-flavor standard model.
We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Jet scaled mass difference.
None
We present the charged-particle multiplicity distributions for e+e− annihilation at center-of-mass energies from 50 to 61.4 GeV. The results are based on a data sample corresponding to a total integrated luminosity of 30 pb−1 obtained with the AMY detector at the KEK storage ring TRISTAN. The charged-particle multiplicity distributions deviate significantly from the modified Poisson and pair Poisson distributions, but follow Koba-Nielsen-Olesen scaling and are well reproduced by the LUND parton-shower model.
Using 773 muons found in hadronic events from 142 pb−1 of data at a c.m. energy of 57.8 GeV, we extract the cross section and forward-backward charge asymmetry for the e+e−→bb¯ process, and the heavy quark fragmentation function parameters for the Peterson model. For the analysis of the e+e−→bb¯ process, we use a method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The cross section and asymmetry for e+e−→bb¯ are found to be Rb = 0.57 ± 0.06(stat) ± 0.08(syst) and Ab = −0.59 ± 0.09 ± 0.09, respectively. They are consistent with the standard model predictions. For the study of the fragmentation function we use the variable 〈xE〉, the fraction of the beam energy carried by the heavy hadrons. We obtain 〈xE〉c=0.56−0.05−0.03+0.04+0.03 and 〈xE〉b=0.65−0.04−0.06+0.06+0.05, respectively. These are in good agreement with previously measured values.
The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).
The total cross section for e + e − annihilation into hadrons has been measured for CM energies ranging from 50 to 57 GeV. We fit the predictions of the standard model to these measurements and those at lower energies. The mass of the Z 0 boson, M Z , and the QCD scale parameter, Λ MS , are derived from the fit. The results are M Z =88.6 −1.8 +2.0 GeV/ c 2 , and Λ MS =0.15 −0.11 +0.16 GeV .
A search for pair production of fourth-generation sequential leptons in e+e− annihilation at a center-of-mass energy s=56 GeV is reported. Event topologies corresponding to the cases where one particle decays leptonically while the other decays hadronically as well as those where both particles decay hadronically were explored. We set a 95%-confidence-level lower limit of 27.6 GeV/c2 for the mass of a fourth-generation lepton.
The ratio R of the total cross section for e+e− annihilation into hadrons to the lowest-order QED cross section for e+e−→μ+μ− has been measured for center-of-mass energies ranging from 50 to 61.4 GeV. If we allow for an overall shift of —4.9%, about 1.5 times our estimated normalization error, the results are consistent with the standard-model predictions.
The photon structure function F 2 γ has been measured at average Q 2 values of 73 and 390 GeV 2 using data collected by the AMY detector at the TRISTAN e + e − collider. F 2 γ is observed to be increasing as ln Q 2 . The x -dependence of F 2 γ , where x is the momentum fraction carried by the parton inside the photon, is also measured. The measurements are compared with several parton density models.
No description provided.
No description provided.
Errors contain both statistics and systematics.