Charged particle multiplicity distributions in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 50 (1991) 185-194, 1991.
Inspire Record 301657 DOI 10.17182/hepdata.15028

This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is <nch>=20.71±0.04(stat)±0.77(syst) and the dispersionD=6.28±0.03(stat)±0.43(syst). The data are compared with the results at lower energies and with the predictions of phenomenological models. The Lund parton shower model describes the data reasonably well. The multiplicity distributions show approximate KNO-scaling. They also show positive forward-backward correlations that are strongest in the central region of rapidity and for particles of opposite charge.

5 data tables

Charged particle multiplicity distribution for the raw data in full phase space.

Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.

Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.

More…

Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

26 data tables

mean values for event shape variables.

Integral of event shape distribution over the specified interval.

Integral of event shape distribution over the specified interval.

More…

Investigation of the splitting of quark and gluon jets.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 4 (1998) 1-17, 1998.
Inspire Record 467927 DOI 10.17182/hepdata.49547

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.

14 data tables

Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.

Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.

More…

Masses, lifetimes and production rates of Xi- and anti-Xi+ at LEP 1.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 639 (2006) 179-191, 2006.
Inspire Record 719387 DOI 10.17182/hepdata.26952

Measurements of the Xi- and anti-Xi+ masses, mass differences, lifetimes and lifetime differences are presented. The anti-Xi+ sample used is much larger than those used previously for such measurements. In addition, the Xi production rates in Z -> b anti-b and Z -> q anti-q events are compared and the position xi* of the maximum of the xi distribution in Z -> q anti-q events is measured.

3 data tables

Corrected LN(1/X) distribution for (XI- + XIBAR+) production.

Measured and extrapoplated production rates.

Extrapolated production rate in b-bbar events.


Di-jet production in gamma-gamma collisions at LEP2

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 58 (2008) 531-541, 2008.
Inspire Record 806241 DOI 10.17182/hepdata.51688

The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.

11 data tables

Total cross section for dijet production. Errors are combined statistics and systematics.

Measured dijet production cross section as a function of the mean jet transverse momentum. Errors include both statistics and systematics.

Measured dijet production cross section as a function of jet pseudorapiditydifference. Errors include both statistics and systematics.

More…