Version 3
Search for an anomalous excess of inclusive charged-current $\nu_e$ interactions in the MicroBooNE experiment using Wire-Cell reconstruction

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.D 105 (2022) 112005, 2022.
Inspire Record 1953539 DOI 10.17182/hepdata.114862

We report a search for an anomalous excess of inclusive charged-current (CC) $\nu_e$ interactions using the Wire-Cell event reconstruction package in the MicroBooNE experiment, which is motivated by the previous observation of a low-energy excess (LEE) of electromagnetic events from the MiniBooNE experiment. With a single liquid argon time projection chamber detector, the measurements of $\nu_{\mu}$ CC interactions as well as $\pi^0$ interactions are used to constrain signal and background predictions of $\nu_e$ CC interactions. A data set collected from February 2016 to July 2018 corresponding to an exposure of 6.369 $\times$ 10$^{20}$ protons on target from the Booster Neutrino Beam at FNAL is analyzed. With $x$ representing an overall normalization factor and referred to as the LEE strength parameter, we select 56 fully contained $\nu_e$ CC candidates while expecting 69.6 $\pm$ 8.0 (stat.) $\pm$ 5.0 (sys.) and 103.8 $\pm$ 9.0 (stat.) $\pm$ 7.4 (sys.) candidates after constraints for the absence (eLEE$_{x=0}$) of the median signal strength derived from the MiniBooNE observation and the presence (eLEE$_{x=1}$) of that signal strength, respectively. Under a nested hypothesis test using both rate and shape information in all available channels, the best-fit $x$ is determined to be 0 (eLEE$_{x=0}$) with a 95.5% confidence level upper limit of $x$ at 0.502. Under a simple-vs-simple hypotheses test, the eLEE$_{x=1}$ hypothesis is rejected at 3.75$\sigma$, while the eLEE$_{x=0}$ hypothesis is shown to be consistent with the observation at 0.45$\sigma$. In the context of the eLEE model, the estimated 68.3% confidence interval of the $\nu_e$ hypothesis to explain the LEE observed in the MiniBooNE experiment is disfavored at a significance level of more than 2.6$\sigma$ (3.0$\sigma$) considering MiniBooNE's full (statistical) uncertainties.

135 data tables

Fully contained $\nu_e$CC data, signal, background, and LEE(x=1) predictions constrained by the $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$ channels under a LEE(x=0) hypothesis. Note that here we show the sum of the constrained signal and constrained background; due to correlations between signal and background, this is not identical to constraining after summing signal and background, but the difference here is minimal. Note that the rightmost bin is an overflow bin, containing all events with reconstructed neutrino energy greater than 2.5 GeV. The background includes neutral current events, $\nu_\mu$CC events, events with a true neutrino interaction vertex outside the fiducial volume (3 cm inside the TPC active volume), and cosmic ray backgrounds. The signal includes the remaining intrinsic $\nu_e$CC events. The LEE(x=1) includes the predicted excess from an unfolding of the MiniBooNE LEE under a $\nu_e$CC hypothesis.

Fully contained $\nu_e$CC data, signal, background, and LEE(x=1) predictions constrained by the $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$ channels under a LEE(x=0) hypothesis. Note that here we show the sum of the constrained signal and constrained background; due to correlations between signal and background, this is not identical to constraining after summing signal and background, but the difference here is minimal. Note that the rightmost bin is an overflow bin, containing all events with reconstructed neutrino energy greater than 2.5 GeV. The background includes neutral current events, $\nu_\mu$CC events, events with a true neutrino interaction vertex outside the fiducial volume (3 cm inside the TPC active volume), and cosmic ray backgrounds. The signal includes the remaining intrinsic $\nu_e$CC events. The LEE(x=1) includes the predicted excess from an unfolding of the MiniBooNE LEE under a $\nu_e$CC hypothesis.

Fully contained $\nu_e$CC data, signal, background, and LEE(x=1) predictions constrained by the $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$ channels under a LEE(x=0) hypothesis. Note that here we show the sum of the constrained signal and constrained background; due to correlations between signal and background, this is not identical to constraining after summing signal and background, but the difference here is minimal. Note that the rightmost bin is an overflow bin, containing all events with reconstructed neutrino energy greater than 2.5 GeV. The background includes neutral current events, $\nu_\mu$CC events, events with a true neutrino interaction vertex outside the fiducial volume (3 cm inside the TPC active volume), and cosmic ray backgrounds. The signal includes the remaining intrinsic $\nu_e$CC events. The LEE(x=1) includes the predicted excess from an unfolding of the MiniBooNE LEE under a $\nu_e$CC hypothesis.

More…