Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV to 209-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 33 (2004) 173-212, 2004.
Inspire Record 628491 DOI 10.17182/hepdata.43174

Cross-section and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant alphaem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the gamma-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.

18 data tables

CM energy values.

Measured cross section for QUARK QUARKBAR (HADRON) production. The data are corrected to no interference between initial and final state radiation.

Measured cross section for MU+ MU- production. The data are corrected to no interference between initial and final state radiation.

More…

Search for lepton flavour violation in e+ e- collisions at s**(1/2) = 189-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 519 (2001) 23-32, 2001.
Inspire Record 562543 DOI 10.17182/hepdata.49819

We search for lepton flavour violating events (e mu, e tau and mu tau) that could be directly produced in e+e- annihilations, using the full available data sample collected with the OPAL detector at centre-of-mass energies between 189 GeV and 209 GeV. In general, the Standard Model expectations describe the data well for all the channels and at each sqrt(s). A single e mu event is observed where according to our Monte Carlo simulations only 0.019 events are expected from Standard Model processes. We obtain the first limits on the cross-sections sigma(e+e- -> e mu, e tau and mu tau) as a function of sqrt(s) at LEP2 energies.

1 data table

No description provided.


Measurement of the branching ratio for the process b --> tau- anti-nu/tau X.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Åkesson, P.F. ; et al.
Phys.Lett.B 520 (2001) 1-10, 2001.
Inspire Record 561580 DOI 10.17182/hepdata.49743

The inclusive branching ratio for the process b -> tau nu X has been measured using hadronic Z decays collected by the OPAL experiment at LEP in the years 1992-2000. The result is: BR(b -> tau nu X) = (2.78 +/- 0.18 +/- 0.51)% This measurement is consistent with the Standard Model expectation and puts a constraint of tan(beta) / M(H+/-) < 0.53 GeV-1 at the 95% confidence level on Type II Two Higgs Doublet Models.

1 data table

TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.


Measurement of the branching ratio for D/s- --> tau- anti-nu/tau decays.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 516 (2001) 236-248, 2001.
Inspire Record 553945 DOI 10.17182/hepdata.49836

Using about 3.9 million hadronic Z decays from e+e- collisions recorded by the OPAL detector at LEP at centre-of-mass energies near MZ the branching ratio for the decay D_s -> tau nu_tau has been measured to be (7.0 +/- 2.1(stat) +/- 2.0 (syst))%. This result can be used to derive the decay constant of the D_s meson: f(D_s) = 286 +/- 44(stat) +/- 41(syst) MeV.

1 data table

FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant.


Precision neutral current asymmetry parameter measurements from the tau polarization at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 21 (2001) 1-21, 2001.
Inspire Record 554583 DOI 10.17182/hepdata.49765

Measurements of the tau lepton polarization and forward-backward polarization asymmetry near the Z resonance using the OPAL detector are described. The measurements are based on analyses of tau -> e nu_e nu_tau, tau -> mu nu_mu nu_tau, tau -> pi nu_tau, tau -> rho nu_tau and tau -> a1 nu_tau decays from a sample of 144810 e+e- -> tau+ tau- candidates corresponding to an integrated luminosity of 151 pb-1. Assuming that the tau lepton decays according to V-A theory, we measure the average tau polarization near Ecm = MZ to be <Ptau> = (-14.10 +/- 0.73 +/- 0.55)% and the tau polarization forward-backward asymmetry to be Afb = (-10.55 +/- 0.76 +/- 0.25)%, where the first error is statistical and the second systematic. Taking into account the small effects of the photon propagator, photon-Z interference and photonic radiative corrections, these results can be expressed in terms of the lepton neutral current asymmetry parameters: Atau = 0.1456 +/- 0.0076 +/- 0.0057, Ae = 0.1454 +/- 0.0108 +/- 0.0036. These measurements are consistent with the hypothesis of lepton universality and combine to give Al = 0.1455 +/- 0.0073. Within the context of the Standard Model this combined result corresponds to sin^2(theta)(lept,effective) = 0.23172 +/- 0.00092. Combing these results with those from the other OPAL neutral current measurements yields a value of sin^2(theta)(lept,effective) = 0.23211 +/- 0.00068.

1 data table

No description provided.


Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

7 data tables

The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).

The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

More…

Measurement of W boson polarizations and CP violating triple gauge couplings from W+ W- production at LEP

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 19 (2001) 229-240, 2001.
Inspire Record 533112 DOI 10.17182/hepdata.49856

Measurements are presented of the polarisation of W+W- boson pairs produced in e+e- collisions, and of CP-violating WWZ and WWGamma trilinear gauge couplings. The data were recorded by the OPAL experiment at LEP during 1998, where a total integrated luminosity of 183 pb^-1 was obtained at a centre-of-mass energy of 189 GeV. The measurements are performed through a spin density matrix analysis of the W boson decay products. The fraction of W bosons produced with longitudinal polarisation was found to be sigma_L/sigma_total = (21.0 +- 3.3 +- 1.6)% where the first error is statistical and the second systematic. The joint W boson pair production fractions were found to be sigma_TT/sigma_total = (78.1 +- 9.0 +- 3.2) %, sigma_LL/sigma_total = (20.1 +- 7.2 +- 1.8) % and sigma_TL/sigma_total = (1.8 +- 14.7 +- 3.8) %. In the CP-violating trilinear gauge coupling sector we find kappa_z = -0.20 +0.10 -0.07, g^z_4 = -0.02 +0.32 -0.33 and lambda_z = -0.18 +0.24 -0.16, where errors include both statistical and systematic uncertainties. In each case the coupling is determined with all other couplings set to their Standard Model values except those related to the measured coupling via SU(2)_LxU(1)_Y symmetry. These results are consistent with Standard Model expectations.

4 data tables

Individual W-boson transverse polarised cross-sections.

Individual W-boson longitudinal polarised cross-sections.

W pair polarized cross-sections. (C=TT), (C=LL), and (C=TL) stand for both W transversely polarised, for both W longitudinally polarised, and for transversely and longitudinally polarisedW-bosons, respectively.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 13 (2000) 553-572, 2000.
Inspire Record 504989 DOI 10.17182/hepdata.49123

Cross-sections and angular distributions for hadronic and lepton pair final states in e+e- collisions at a centre-of-mass energy near 189 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a sneutrino in supersymmetric theories with R-parity violation. A search for the indirect effects of the gravitational interaction in extra dimensions on the mu+mu- and tau+tau- final states is also presented.

9 data tables

Hadronic cross section.

The cross sections for hadronic, and muon- and tau-pair production in the two sprime/s regions.

The cross sections for electron -pair production with various angular cuts.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 183-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 6 (1999) 1-18, 1999.
Inspire Record 473699 DOI 10.17182/hepdata.49337

Cross-sections for hadronic, b-bbar and lepton pair final states in e+e- collisions at sqrt(s) = 183 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. Forward-backward asymmetries for the leptonic final states have also been measured. Cross-sections and asymmetries are also presented for data recorded in 1997 at sqrt(s) = 130 and 136 GeV. The results are used to measure the energy dependence of the electromagnetic coupling constant alpha_em, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a leptoquark, or of a squark or sneutrino in supersymmetric theories with R-parity violation.

21 data tables

No description provided.

The contribution of interference between initial- and final-state radiationhas been removed.

The contribution of interference between initial- and final-state radiationhas been removed.

More…

Tests of the standard model and constraints on new physics from measurements of fermion pair production at 130-GeV to 172-GeV at LEP

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 2 (1998) 441-472, 1998.
Inspire Record 447186 DOI 10.17182/hepdata.47404

Production of events with hadronic and leptonic final states has been measured in e^+e^- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z \gamma events, and compared to Standard Model expectations. The ratio R_b of the cross-section for bb(bar) production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of \gamma-Z interference. The energy dependence of \alpha_em has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on chargino pair production with subsequent decay of the chargino into a light gluino and a quark pair.

15 data tables

SIG(C=MEAS) and SIG(C=CORR) stand for measured values without (C=MEAS) and with (C=CORR) correction for interference between initial- and final-state radiation.

The angular distribution of the thrust axis. Errors include statistical and systematic effects combined, with the former dominant.

The measured values include the effect of interference between initial- andfinal-state radiation.

More…