Search for narrow trijet resonances in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-008, 2023.
Inspire Record 2713513 DOI 10.17182/hepdata.144165

The first search for narrow resonances decaying to three well-separated hadronic jets is presented. The search uses proton-proton collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at $\sqrt{s}$ = 13 TeV, collected at the CERN LHC. No significant deviations from the background predictions are observed between 1.75-9.00 TeV. The results provide the first mass limits on a right-handed boson Z$_{\mathrm{R}}$ decaying to three gluons, an excited quark decaying via a vector boson to three quarks, as well as updated limits on a Kaluza-Klein gluon decaying via a radion to three gluons.

35 data tables

Observed and expected (background-only fitted) invariant mass spectra of trijet events. Data spectra from three years are fitted separately and the sum is shown in the figure. The fitting function used is ${ d N}/{ d m} = p_{0}(1-x)^{p_{1}}/x^{\sum_{i=2}^{3} p_{i}\log^{i-2}(x)}$. The fitted parameters are $p_{1} = 7.350, p_{2} = 6.926, p_{3} = 0.388$ for 2016, $p_{1} = 8.308, p_{2} = 5.931, p_{3} = 0.167$ for 2017 and $p_{1} = 8.770, p_{2} = 5.617, p_{3} = 0.106$ for 2018. $p_{0}$ is the normalization parameter and its exact value is irrelevant.

Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to ggg) \mathcal{A}$ for a 3-body decay trijet resonance with $\Gamma_{X}\sim 3\% m_{X}$. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions assuming SM-like couplings are depicted with the red curve.

Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to ggg) \mathcal{A}$ for a 3-body decay trijet resonance with $\Gamma_{X}\sim 0.01\% m_{X}$. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions are depicted with the red curve.

More…

Search for dark matter produced in association with a Higgs boson decaying to tau leptons at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 09 (2023) 189, 2023.
Inspire Record 2661503 DOI 10.17182/hepdata.140433

A search for dark matter produced in association with a Higgs boson in final states with two hadronically decaying $\tau$-leptons and missing transverse momentum is presented. The analysis uses $139$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence for physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+$a$ model. Exclusion limits at 95% confidence level are derived. Model-independent limits are also set on the visible cross section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying to $\tau$-leptons.

70 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>CLs and CLs+b values</b> <ul> <li><a href=?table=CLs_tanb_mA_grid_Expected>Expected CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_tanb_mA_grid_Observed>Observed CLs values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Expected>Expected CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_HighmA_SR_Observed>Observed CLs values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Expected>Expected CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLs_ma_mA_grid_LowmA_SR_Observed>Observed CLs values in mA vs ma grid, Low mA SR</a> <li><a href=?table=CLsplusb_tanb_mA_grid>CLs+b values in mA vs tanB grid, Low mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_HighmA_SR>CLs+b values in mA vs ma grid, High mA SR</a> <li><a href=?table=CLsplusb_ma_mA_grid_LowmA_SR>CLs+b values in mA vs ma grid, Low mA SR</a> </ul> <b>Cutflow tables</b> <ul> <li><a href=?table=Cutflows_ggf_LowmA_SR>Low mA SR, ggF production</a> <li><a href=?table=Cutflows_ggf_HighmA_SR>High mA SR, ggF production</a> <li><a href=?table=Cutflows_bb_LowmA_SR>Low mA SR, bb production</a> <li><a href=?table=Cutflows_bb_HighmA_SR>High mA SR, bb production</a> </ul> <b>Kinematic Distributions</b> <ul> <li><a href=?table=KinDist_LowmA_SR>Low mA SR mTtau1+mTtau2 distribution</a> <li><a href=?table=KinDist_HighmA_SR>High mA SR mTtau1+mTtau2 distribution</a> </ul> <b>Limits</b> <ul> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAma_grid>Expected 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAma_grid>Observed 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAma_grid>Expected +-1 sigma 95% CL exclusion limit in mA vs ma grid</a> <li><a href=?table=Expected_95%_CL_exclusion_limit_mAtanB_grid>Expected 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Observed_95%_CL_exclusion_limit_mAtanB_grid>Observed 95% CL exclusion limit in mA vs tanB grid</a> <li><a href=?table=Expected_pm1sigma_95%_CL_exclusion_limit_mAtanB_grid>Expected +-1 sigma 95% CL exclusion limit in tanB grid</a> </ul> <b>Acceptance and efficiency</b> <ul> <li><a href=?table=table1>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table2>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table3>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table4>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table5>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table6>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table7>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table8>Acceptance, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table9>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table10>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table11>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table12>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table13>Acceptance, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table14>Acceptance, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table15>Acceptance, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table16>Acceptance, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table17>Acceptance, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table18>Acceptance, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table19>Acceptance, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table20>Acceptance, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table21>Acceptance, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table22>Acceptance, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table23>Acceptance, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table24>Acceptance, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> <li><a href=?table=table25>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, bb prod</a> <li><a href=?table=table26>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, bb prod</a> <li><a href=?table=table27>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, bb prod</a> <li><a href=?table=table28>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, bb prod</a> <li><a href=?table=table29>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, bb prod</a> <li><a href=?table=table30>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, bb prod</a> <li><a href=?table=table31>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, bb prod</a> <li><a href=?table=table32>Efficiency, High mA SR, mA vs ma grid, >750 GeV, bb prod</a> <li><a href=?table=table33>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, bb prod</a> <li><a href=?table=table34>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, bb prod</a> <li><a href=?table=table35>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, bb prod</a> <li><a href=?table=table36>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, bb prod</a> <li><a href=?table=table37>Efficiency, High mA SR, mA vs tanB grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table38>Efficiency, High mA SR, mA vs tanB grid, >750 GeV, ggF prod</a> <li><a href=?table=table39>Efficiency, Low mA SR, mA vs tanB grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table40>Efficiency, Low mA SR, mA vs tanB grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table41>Efficiency, Low mA SR, mA vs tanB grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table42>Efficiency, Low mA SR, mA vs tanB grid, >550 GeV, ggF prod</a> <li><a href=?table=table43>Efficiency, High mA SR, mA vs ma grid, 400-750 GeV, ggF prod</a> <li><a href=?table=table44>Efficiency, High mA SR, mA vs ma grid, >750 GeV, ggF prod</a> <li><a href=?table=table45>Efficiency, Low mA SR, mA vs ma grid, 100-250 GeV, ggF prod</a> <li><a href=?table=table46>Efficiency, Low mA SR, mA vs ma grid, 250-400 GeV, ggF prod</a> <li><a href=?table=table47>Efficiency, Low mA SR, mA vs ma grid, 400-550 GeV, ggF prod</a> <li><a href=?table=table48>Efficiency, Low mA SR, mA vs ma grid, >550 GeV, ggF prod</a> </ul>

Expected CLs values in the Low mA SR, mA vs tanB signal grid.

Observed CLs values in the Low mA SR, mA vs tanB signal grid.

More…

Version 2
Search for W$\gamma$ resonances in proton-proton collisions at $\sqrt{s} =$ 13 TeV using hadronic decays of Lorentz-boosted W bosons

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Lett.B 826 (2022) 136888, 2022.
Inspire Record 1869502 DOI 10.17182/hepdata.106162

A search for W$\gamma$ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector at the LHC in 2016-2018. The W$\gamma$ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the W$\gamma$ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the W$\gamma$ channel are set for minimum W$\gamma$ mass thresholds between 1.5 and 8.0 TeV.

20 data tables

Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.

Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.

Fitted 4th order polynomials to the product of the signal efficiency and acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events passing full analysis cuts to the number of signal events generated. The fitting function is $ A \epsilon = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A \epsilon$ is the product of the signal efficiency and acceptance, m is the signal mass.

More…

Version 3
Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, $b$-jets and missing transverse momentum

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 12 (2019) 060, 2019.
Inspire Record 1748602 DOI 10.17182/hepdata.89408

The result of a search for the pair production of the lightest supersymmetric partner of the bottom quark ($\tilde{b}_{1}$) using 139 fb$^{-1}$ of proton-proton data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector is reported. In the supersymmetric scenarios considered both of the bottom-squarks decay into a $b$-quark and the second-lightest neutralino, $\tilde{b}_{1} \rightarrow b + \tilde{\chi}^{0}_{2}$. Each $\tilde{\chi}^{0}_{2}$ is assumed to subsequently decay with 100% branching ratio into a Higgs boson ($h$) like the one in the Standard Model and the lightest neutralino: $\tilde{\chi}^{0}_{2} \rightarrow h + \tilde{\chi}^{0}_{1}$. The $\tilde{\chi}^{0}_{1}$ is assumed to be the lightest supersymmetric particle (LSP) and is stable. Two signal mass configurations are targeted: the first has a constant LSP mass of 60 GeV; and the second has a constant mass difference between the $\tilde{\chi}^{0}_{2}$ and $\tilde{\chi}^{0}_{1}$ of 130 GeV. The final states considered contain no charged leptons, three or more $b$-jets, and large missing transverse momentum. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered. Limits at the 95% confidence level are placed in the supersymmetric models considered, and bottom-squarks with mass up to 1.5 TeV are excluded.

144 data tables

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

Distributions of ${E}_{\mathrm{T}}^{\mathrm{miss}}$ after the background-only fit. The backgrounds which contribute only a small amount (diboson, W+jets and ttbar+W/Z/h) are grouped and labelled as `Other'.

More…

Search for the production of a long-lived neutral particle decaying within the ATLAS hadronic calorimeter in association with a $Z$ boson from $pp$ collisions at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 122 (2019) 151801, 2019.
Inspire Record 1702261 DOI 10.17182/hepdata.83963

This Letter presents a search for the production of a long-lived neutral particle ($Z_d$) decaying within the ATLAS hadronic calorimeter, in association with a Standard Model (SM) $Z$ boson produced via an intermediate scalar boson, where $Z\to l^+l^-$ ($l=e,\mu$). The data used were collected by the ATLAS detector during 2015 and 2016 $pp$ collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV at the Large Hadron Collider and corresponds to an integrated luminosity of $36.1\pm0.8$ fb$^{-1}$. No significant excess of events is observed above the expected background. Limits on the production cross section of the scalar boson times its decay branching fraction into the long-lived neutral particle are derived as a function of the mass of the intermediate scalar boson, the mass of the long-lived neutral particle, and its $c\tau$ from a few centimeters to one hundred meters. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a $c\tau$ approximately between 0.1 m and 7 m is excluded with a 95% confidence level up to 10% for $m_{Z_d}$ between 5 and 15 GeV.

1 data table

The product of acceptance and efficiency for all signal MC samples.


Version 3
Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2018) 050, 2018.
Inspire Record 1672099 DOI 10.17182/hepdata.83011

A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}

132 data tables

Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.

More…

Measurement of the Higgs boson coupling properties in the $H\rightarrow ZZ^{*} \rightarrow 4\ell$ decay channel at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 03 (2018) 095, 2018.
Inspire Record 1641268 DOI 10.17182/hepdata.83009

The coupling properties of the Higgs boson are studied in the four-lepton decay channel using 36.1 fb$^{-1}$ of $pp$ collision data from the LHC at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. Cross sections are measured for the four key production modes in several exclusive regions of the Higgs boson production phase space and are interpreted in terms of coupling modifiers. The inclusive cross section times branching ratio for $H \rightarrow ZZ^*$ decay and for a Higgs boson absolute rapidity below 2.5 is measured to be $1.73^{+0.24}_{-0.23}$(stat.)$^{+0.10}_{-0.08}$(exp.)$\pm 0.04$(th.) pb compared to the Standard Model prediction of $1.34\pm0.09$ pb. In addition, the tensor structure of the Higgs boson couplings is studied using an effective Lagrangian approach for the description of interactions beyond the Standard Model. Constraints are placed on the non-Standard-Model CP-even and CP-odd couplings to $Z$ bosons and on the CP-odd coupling to gluons.

28 data tables

The expected number of SM Higgs boson events with a mass mH= 125.09 GeV in the mass range 118 < m4l < 129 GeV for an integrated luminosity of 36.1/fb and sqrt(s)= 13 TeV in each reconstructed event category, shown separately for each Stage-0 production bin. The ggF and bbH contributions are shown separately but both contribute to the same (ggF) production bin. Statistical and systematic uncertainties are added in quadrature.

The observed and expected numbers of signal and background events in the four-lepton decay channels for an integrated luminosity of 36.1/fb and at sqrt(s)= 13 TeV, assuming the SM Higgs boson signal with a mass m_{H} = 125.09 GeV . The second column shows the expected number of signal events for the full mass range while the subsequent columns correspond to the mass range of 118 < m4l < 129 GeV. In addition to the ZZ* background, the contribution of other backgrounds is shown, comprising the data-driven estimate from Table 4 and the simulation-based estimate of contributions from rare triboson and tbar{t}V processes. Statistical and systematic uncertainties are added in quadrature.

The expected and observed numbers of signal events in reconstructed event categories for an integrated luminosity of 36.1/fb at sqrt(s)= 13 TeV, together with signal acceptances for each Stage-0 production mode. Results are obtained in bins of BDT discriminants using coarse binning with several bins merged into one. Signal acceptances less than 0.0001 are set to 0.

More…

A search for pair-produced resonances in four-jet final states at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 250, 2018.
Inspire Record 1631641 DOI 10.17182/hepdata.79059

A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb$^{-1}$ of $\sqrt{s}=$ 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, $\tilde{t}$, which decays promptly into two quarks through $R$-parity-violating couplings. Top squarks with masses in the range 100 GeV < $m_{\tilde{t}}$ < 410 GeV are excluded at 95% confidence level. If the decay is into a $b$-quark and a light quark, a dedicated selection requiring two $b$-tags is used to exclude masses in the ranges 100 GeV < $m_{\tilde{t}}$ < 470 GeV and 480 GeV < $m_{\tilde{t}}$ < 610 GeV. Additional limits are set on the pair-production of massive colour-octet resonances.

16 data tables

- - - - - - - - - - - - - - - - - - - - <p><b>Cutflows:</b><br> <a href="79059?version=1&table=CutflowTable1">Stop 100GeV</a><br> <a href="79059?version=1&table=CutflowTable2">Stop 500GeV</a><br> <a href="79059?version=1&table=CutflowTable3">Coloron 1500GeV</a><br> </p> <p><b>Event Yields:</b><br> <a href="79059?version=1&table=SRdistribution1">Inclusive stop SR</a><br> <a href="79059?version=1&table=SRdistribution2">Inclusive coloron SR </a><br> <a href="79059?version=1&table=SRdistribution3">b-tagged stop SR</a><br> </p> <p><b>Acceptances and Efficiencies:</b><br> <a href="79059?version=1&table=Acceptance1">Inclusive stop SR, before mass window</a><br> <a href="79059?version=1&table=Acceptance2">Inclusive stop SR, after mass window</a><br> <a href="79059?version=1&table=Acceptance3">Inclusive coloron SR, before mass window</a><br> <a href="79059?version=1&table=Acceptance4">Inclusive coloron SR, after mass window</a><br> <a href="79059?version=1&table=Acceptance5">b-tagged stop SR, before mass window</a><br> <a href="79059?version=1&table=Acceptance6">b-tagged stop SR, after mass window</a><br> </p> <p><b>Cross section upper limits:</b><br> <a href="79059?version=1&table=Limitoncrosssection1">Inclusive stop SR</a><br> <a href="79059?version=1&table=Limitoncrosssection2">Inclusive coloron SR</a><br> <a href="79059?version=1&table=Limitoncrosssection3">b-tagged stop SR</a><br> </p> <p><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left) </p>

Cutflow table for a pair produced top squark of 100 GeV decaying into a b- and an s-quark.

Cutflow table for a pair produced top squark of 500 GeV decaying into a b- and an s-quark.

More…

Version 3
A search for $B-L$ $R$-parity-violating top squarks in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032003, 2018.
Inspire Record 1630899 DOI 10.17182/hepdata.78376

A search is presented for the direct pair production of the stop, the supersymmetric partner of the top quark, that decays through an $R$-parity-violating coupling to a final state with two leptons and two jets, at least one of which is identified as a $b$-jet. The dataset corresponds to an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV, collected in 2015 and 2016 by the ATLAS detector at the LHC. No significant excess is observed over the Standard Model background, and exclusion limits are set on stop pair production at a 95% confidence level. Lower limits on the stop mass are set between 600 GeV and 1.5 TeV for branching ratios above 10% for decays to an electron or muon and a $b$-quark.

212 data tables

Signal acceptance (in %) in the (BRe,BRtau) plane for a 800 GeV stop, for the SR800 signal region.

Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.

Expected exclusion limit contour in the (BRe,BRtau) plane for a 600 GeV stop. All limits are computed at 95% CL.

More…

Version 2
Search for supersymmetry in events with $b$-tagged jets and missing transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 195, 2017.
Inspire Record 1620694 DOI 10.17182/hepdata.79165

A search for the supersymmetric partners of the Standard Model bottom and top quarks is presented. The search uses 36.1 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Direct production of pairs of bottom and top squarks ($\tilde{b}_{1}$ and $\tilde{t}_{1}$) is searched for in final states with $b$-tagged jets and missing transverse momentum. Distinctive selections are defined with either no charged leptons (electrons or muons) in the final state, or one charged lepton. The zero-lepton selection targets models in which the $\tilde{b}_{1}$ is the lightest squark and decays via $\tilde{b}_{1} \rightarrow b \tilde{\chi}^{0}_{1}$, where $\tilde{\chi}^{0}_{1}$ is the lightest neutralino. The one-lepton final state targets models where bottom or top squarks are produced and can decay into multiple channels, $\tilde{b}_{1} \rightarrow b \tilde{\chi}^{0}_{1}$ and $\tilde{b}_{1} \rightarrow t \tilde{\chi}^{\pm}_{1}$, or $\tilde{t}_{1} \rightarrow t \tilde{\chi}^{0}_{1}$ and $\tilde{t}_{1} \rightarrow b \tilde{\chi}^{\pm}_{1}$, where $\tilde{\chi}^{\pm}_{1}$ is the lightest chargino and the mass difference $m_{\tilde{\chi}^{\pm}_{1}}- m_{\tilde{\chi}^{0}_{1}}$ is set to 1 GeV. No excess above the expected Standard Model background is observed. Exclusion limits at 95\% confidence level on the mass of third-generation squarks are derived in various supersymmetry-inspired simplified models.

202 data tables

- - - - - - - - - - - - - - - - - - - - <br/><b>Acceptance:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Acceptance1">b0L-SRA350</a> <a href="79165?version=1&table=Acceptance2">b0L-SRA450</a> <a href="79165?version=1&table=Acceptance3">b0L-SRA550</a> <a href="79165?version=1&table=Acceptance4">b0L-SRB</a> <a href="79165?version=1&table=Acceptance5">b0L-SRC</a> <a href="79165?version=1&table=Acceptance6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Acceptance7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Acceptance8">b1L-SRA450</a> <a href="79165?version=1&table=Acceptance9">b1L-SRA600</a> <a href="79165?version=1&table=Acceptance10">b1L-SRA750</a> <a href="79165?version=1&table=Acceptance11">b1L-SRB</a> <a href="79165?version=1&table=Acceptance12">b1L-best</a><br/><br/><b>Efficiency:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Efficiency1">b0L-SRA350</a> <a href="79165?version=1&table=Efficiency2">b0L-SRA450</a> <a href="79165?version=1&table=Efficiency3">b0L-SRA550</a> <a href="79165?version=1&table=Efficiency4">b0L-SRB</a> <a href="79165?version=1&table=Efficiency5">b0L-SRC</a> <a href="79165?version=1&table=Efficiency6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Efficiency7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Efficiency8">b1L-SRA450</a> <a href="79165?version=1&table=Efficiency9">b1L-SRA600</a> <a href="79165?version=1&table=Efficiency10">b1L-SRA750</a> <a href="79165?version=1&table=Efficiency11">b1L-SRB</a> <a href="79165?version=1&table=Efficiency12">b1L-best</a><br/><br/><b>Best SR Mapping:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=BestSR4">b0L</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=BestSR1">b1L</a> <a href="79165?version=1&table=BestSR2">b0L</a> <a href="79165?version=1&table=BestSR3">combined</a><br/><br/><b>Exclusion Contour:</b><br/><i>symmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour1">exp</a>&nbsp;<a href="79165?version=1&table=Contour2">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour5">exp</a>&nbsp;<a href="79165?version=1&table=Contour6">obs</a> b0L-SRA550&nbsp;<a href="79165?version=1&table=Contour9">exp</a>&nbsp;<a href="79165?version=1&table=Contour10">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour11">exp</a>&nbsp;<a href="79165?version=1&table=Contour12">obs</a> b0L-SRC&nbsp;<a href="79165?version=1&table=Contour15">exp</a>&nbsp;<a href="79165?version=1&table=Contour16">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour17">exp</a>&nbsp;<a href="79165?version=1&table=Contour18">obs</a><br/><i>asymmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour3">exp</a>&nbsp;<a href="79165?version=1&table=Contour4">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour7">exp</a>&nbsp;<a href="79165?version=1&table=Contour8">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour13">exp</a>&nbsp;<a href="79165?version=1&table=Contour14">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour19">exp</a>&nbsp;<a href="79165?version=1&table=Contour20">obs</a> b1L-SRA300-2j&nbsp;<a href="79165?version=1&table=Contour21">exp</a>&nbsp;<a href="79165?version=1&table=Contour22">obs</a> b1L-SRA450&nbsp;<a href="79165?version=1&table=Contour23">exp</a>&nbsp;<a href="79165?version=1&table=Contour24">obs</a> b1L-SRA600&nbsp;<a href="79165?version=1&table=Contour25">exp</a>&nbsp;<a href="79165?version=1&table=Contour26">obs</a> b1L-SRA750&nbsp;<a href="79165?version=1&table=Contour27">exp</a>&nbsp;<a href="79165?version=1&table=Contour28">obs</a> b1L-SRB&nbsp;<a href="79165?version=1&table=Contour29">exp</a>&nbsp;<a href="79165?version=1&table=Contour30">obs</a> b1L-best&nbsp;<a href="79165?version=1&table=Contour31">exp</a>&nbsp;<a href="79165?version=1&table=Contour32">obs</a> A-LowMass&nbsp;<a href="79165?version=1&table=Contour33">exp</a>&nbsp;<a href="79165?version=1&table=Contour34">obs</a> A-HighMass&nbsp;<a href="79165?version=1&table=Contour35">exp</a>&nbsp;<a href="79165?version=1&table=Contour36">obs</a> B combination&nbsp;<a href="79165?version=1&table=Contour37">exp</a>&nbsp;<a href="79165?version=1&table=Contour38">obs</a> Best combination&nbsp;<a href="79165?version=1&table=Contour39">exp</a>&nbsp;<a href="79165?version=1&table=Contour40">obs</a><br/><br/><b>SR Distribution:</b><br/><a href="79165?version=1&table=SRdistribution1">b0L-SRA</a>: $m_{\mathrm{CT}}$ <a href="79165?version=1&table=SRdistribution2">b0L-SRB</a>: $\mathrm{min[m_{T}(jet_{1-4}, E_{T}^{miss})]}$ <a href="79165?version=1&table=SRdistribution3">b0L-SRC</a>: ${\cal A}$ <a href="79165?version=1&table=SRdistribution4">b1L-SRA300-2j</a>: $\mathrm{m_{bb}}$ <a href="79165?version=1&table=SRdistribution5">b1L-SRA</a>: $\mathrm{m_{eff}}$ <a href="79165?version=1&table=SRdistribution6">b1L-SRB</a>: $\mathrm{m_{T}}$<br/><br/><b>Cross section upper limit:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Limitoncrosssection1">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection2">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection3">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection4">b0L-SRA550</a> <a href="79165?version=1&table=Limitoncrosssection5">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection6">b0L-SRC</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Limitoncrosssection7">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection8">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection9">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection10">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection11">b1L-best</a> <a href="79165?version=1&table=Limitoncrosssection12">b1L-SRA300-2j</a> <a href="79165?version=1&table=Limitoncrosssection13">b1L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection14">b1L-SRA600</a> <a href="79165?version=1&table=Limitoncrosssection15">b1L-SRA750</a> <a href="79165?version=1&table=Limitoncrosssection16">b1L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection17">best combination</a> <a href="79165?version=1&table=Limitoncrosssection18">A-LowMass</a> <a href="79165?version=1&table=Limitoncrosssection19">A-HighMass</a> <a href="79165?version=1&table=Limitoncrosssection20">B combination</a><br/><br/><b>Cutflow:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=CutflowTable1">b0L-SRA (1 TeV, 1 GeV)</a> <a href="79165?version=1&table=CutflowTable2">b0L-SRB (700 GeV, 450 GeV)</a> <a href="79165?version=1&table=CutflowTable3">b0L-SRC (450 GeV, 430 GeV)</a><br/><i>mixed:</i> <a href="79165?version=1&table=CutflowTable4">b1L-SRA (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable5">b1L-SRA300-2j (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable6">b0L-SRA (700 GeV, 300 GeV)</a><br/><br/><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left)

- - - - - - - - - - - - - - - - - - - - <br/><b>Acceptance:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Acceptance1">b0L-SRA350</a> <a href="79165?version=1&table=Acceptance2">b0L-SRA450</a> <a href="79165?version=1&table=Acceptance3">b0L-SRA550</a> <a href="79165?version=1&table=Acceptance4">b0L-SRB</a> <a href="79165?version=1&table=Acceptance5">b0L-SRC</a> <a href="79165?version=1&table=Acceptance6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Acceptance7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Acceptance8">b1L-SRA450</a> <a href="79165?version=1&table=Acceptance9">b1L-SRA600</a> <a href="79165?version=1&table=Acceptance10">b1L-SRA750</a> <a href="79165?version=1&table=Acceptance11">b1L-SRB</a> <a href="79165?version=1&table=Acceptance12">b1L-best</a><br/><br/><b>Efficiency:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Efficiency1">b0L-SRA350</a> <a href="79165?version=1&table=Efficiency2">b0L-SRA450</a> <a href="79165?version=1&table=Efficiency3">b0L-SRA550</a> <a href="79165?version=1&table=Efficiency4">b0L-SRB</a> <a href="79165?version=1&table=Efficiency5">b0L-SRC</a> <a href="79165?version=1&table=Efficiency6">b0L-best</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Efficiency7">b1L-SRA300-2j</a> <a href="79165?version=1&table=Efficiency8">b1L-SRA450</a> <a href="79165?version=1&table=Efficiency9">b1L-SRA600</a> <a href="79165?version=1&table=Efficiency10">b1L-SRA750</a> <a href="79165?version=1&table=Efficiency11">b1L-SRB</a> <a href="79165?version=1&table=Efficiency12">b1L-best</a><br/><br/><b>Best SR Mapping:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=BestSR4">b0L</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=BestSR1">b1L</a> <a href="79165?version=1&table=BestSR2">b0L</a> <a href="79165?version=1&table=BestSR3">combined</a><br/><br/><b>Exclusion Contour:</b><br/><i>symmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour1">exp</a>&nbsp;<a href="79165?version=1&table=Contour2">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour5">exp</a>&nbsp;<a href="79165?version=1&table=Contour6">obs</a> b0L-SRA550&nbsp;<a href="79165?version=1&table=Contour9">exp</a>&nbsp;<a href="79165?version=1&table=Contour10">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour11">exp</a>&nbsp;<a href="79165?version=1&table=Contour12">obs</a> b0L-SRC&nbsp;<a href="79165?version=1&table=Contour15">exp</a>&nbsp;<a href="79165?version=1&table=Contour16">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour17">exp</a>&nbsp;<a href="79165?version=1&table=Contour18">obs</a><br/><i>asymmetric:</i> b0L-SRA350&nbsp;<a href="79165?version=1&table=Contour3">exp</a>&nbsp;<a href="79165?version=1&table=Contour4">obs</a> b0L-SRA450&nbsp;<a href="79165?version=1&table=Contour7">exp</a>&nbsp;<a href="79165?version=1&table=Contour8">obs</a> b0L-SRB&nbsp;<a href="79165?version=1&table=Contour13">exp</a>&nbsp;<a href="79165?version=1&table=Contour14">obs</a> b0L-best&nbsp;<a href="79165?version=1&table=Contour19">exp</a>&nbsp;<a href="79165?version=1&table=Contour20">obs</a> b1L-SRA300-2j&nbsp;<a href="79165?version=1&table=Contour21">exp</a>&nbsp;<a href="79165?version=1&table=Contour22">obs</a> b1L-SRA450&nbsp;<a href="79165?version=1&table=Contour23">exp</a>&nbsp;<a href="79165?version=1&table=Contour24">obs</a> b1L-SRA600&nbsp;<a href="79165?version=1&table=Contour25">exp</a>&nbsp;<a href="79165?version=1&table=Contour26">obs</a> b1L-SRA750&nbsp;<a href="79165?version=1&table=Contour27">exp</a>&nbsp;<a href="79165?version=1&table=Contour28">obs</a> b1L-SRB&nbsp;<a href="79165?version=1&table=Contour29">exp</a>&nbsp;<a href="79165?version=1&table=Contour30">obs</a> b1L-best&nbsp;<a href="79165?version=1&table=Contour31">exp</a>&nbsp;<a href="79165?version=1&table=Contour32">obs</a> A-LowMass&nbsp;<a href="79165?version=1&table=Contour33">exp</a>&nbsp;<a href="79165?version=1&table=Contour34">obs</a> A-HighMass&nbsp;<a href="79165?version=1&table=Contour35">exp</a>&nbsp;<a href="79165?version=1&table=Contour36">obs</a> B combination&nbsp;<a href="79165?version=1&table=Contour37">exp</a>&nbsp;<a href="79165?version=1&table=Contour38">obs</a> Best combination&nbsp;<a href="79165?version=1&table=Contour39">exp</a>&nbsp;<a href="79165?version=1&table=Contour40">obs</a><br/><br/><b>SR Distribution:</b><br/><a href="79165?version=1&table=SRdistribution1">b0L-SRA</a>: $m_{\mathrm{CT}}$ <a href="79165?version=1&table=SRdistribution2">b0L-SRB</a>: $\mathrm{min[m_{T}(jet_{1-4}, E_{T}^{miss})]}$ <a href="79165?version=1&table=SRdistribution3">b0L-SRC</a>: ${\cal A}$ <a href="79165?version=1&table=SRdistribution4">b1L-SRA300-2j</a>: $\mathrm{m_{bb}}$ <a href="79165?version=1&table=SRdistribution5">b1L-SRA</a>: $\mathrm{m_{eff}}$ <a href="79165?version=1&table=SRdistribution6">b1L-SRB</a>: $\mathrm{m_{T}}$<br/><br/><b>Cross section upper limit:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=Limitoncrosssection1">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection2">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection3">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection4">b0L-SRA550</a> <a href="79165?version=1&table=Limitoncrosssection5">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection6">b0L-SRC</a><br/><i>asymmetric:</i> <a href="79165?version=1&table=Limitoncrosssection7">b0L-best</a> <a href="79165?version=1&table=Limitoncrosssection8">b0L-SRA350</a> <a href="79165?version=1&table=Limitoncrosssection9">b0L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection10">b0L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection11">b1L-best</a> <a href="79165?version=1&table=Limitoncrosssection12">b1L-SRA300-2j</a> <a href="79165?version=1&table=Limitoncrosssection13">b1L-SRA450</a> <a href="79165?version=1&table=Limitoncrosssection14">b1L-SRA600</a> <a href="79165?version=1&table=Limitoncrosssection15">b1L-SRA750</a> <a href="79165?version=1&table=Limitoncrosssection16">b1L-SRB</a> <a href="79165?version=1&table=Limitoncrosssection17">best combination</a> <a href="79165?version=1&table=Limitoncrosssection18">A-LowMass</a> <a href="79165?version=1&table=Limitoncrosssection19">A-HighMass</a> <a href="79165?version=1&table=Limitoncrosssection20">B combination</a><br/><br/><b>Cutflow:</b><br/><i>symmetric:</i> <a href="79165?version=1&table=CutflowTable1">b0L-SRA (1 TeV, 1 GeV)</a> <a href="79165?version=1&table=CutflowTable2">b0L-SRB (700 GeV, 450 GeV)</a> <a href="79165?version=1&table=CutflowTable3">b0L-SRC (450 GeV, 430 GeV)</a><br/><i>mixed:</i> <a href="79165?version=1&table=CutflowTable4">b1L-SRA (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable5">b1L-SRA300-2j (700 GeV, 300 GeV)</a> <a href="79165?version=1&table=CutflowTable6">b0L-SRA (700 GeV, 300 GeV)</a><br/><br/><b>Truth Code</b> and <b>SLHA Files</b> for the cutflows are available under "Resources" (purple button on the left)

Signal acceptance (in %) in the ( M(SBOTTOM), M(NEUTRALINO) ) mass plane for the symmetric decay of the sbottom into bottom quark and neutralino, for the b0L-SRA350 signal region.

More…