We present the results of a formation experiment for the reaction K − p → Λπ 0 in the cms energy between 2200 and 2436 MeV with a total statistics of 10 eV/μb. A partial-wave analysis including these new data gives evidence for the existence of three resonances in the P 3 , D 5 and G 9 (or H 11 ) states in this mass region.
No description provided.
No description provided.
No description provided.
Differential cross sections for π−p→π0n at five angles for 239, 264, 295, 323, and 375 MeV/c incident pions are presented. The measurements employ the neutron-photon coincidence method, using carefully calibrated neutron counters and an efficient, large-area photon detector. Good agreement is found with the results of the CERN phase-shift analysis.
Axis error includes +- 6.3/6.3 contribution.
Axis error includes +- 5.5/5.5 contribution.
Axis error includes +- 5.2/5.2 contribution.
Differential cross sections for π+p elastic scattering in the momentum region 1.2 to 2.3 GeV/c are presented for the center-of-mass angular range 0.9>cosθ>−0.9. Typically, 50 000 events were obtained at each of 16 momenta using magnetostrictive-readout wire spark chambers to detect the particles scattered from a liquid hydrogen target. The results are compared to those of the CERN-71 phase-shift analysis. The well-known dips at t≅−0.7 (GeV/c)2 and at u′=−0.2 (GeV/c)2 are observed. In addition, structure is seen at constant u′=−1.3 (GeV/c)2. The results of a pion attenuation study in iron are also presented.
No description provided.
No description provided.
No description provided.
We report here the results from an experiment to obtain differential cross sections for K−p elastic scattering in the laboratory momentum region from 1.4 to 1.9 GeV/c. These data span the region of a bump in the K−p total cross section at an energy of 2.05 GeV. Approximately 20000 elastic events were obtained at each of four momenta with an angular coverage of 0.9≥cosθc.m.≥−0.9. The data are intended to aid in phase-shift analyses of the resonances causing the bump in the total cross section and to study dip structures at constant values of the Mandelstam variables t and u.
No description provided.
LEGENDRE POLYNOMIAL COEFFICIENTS.
FROM INTEGRATING LEGENDRE POLYNOMIAL FIT TO D(SIG)/DOMEGA. QUOTED ERRORS INCLUDE NORMALIZATION AND FITTING UNCERTAINTIES.
This paper contains the results of a study of the reaction K−p→Λπ0 in the center-of-mass-system-energy region of 1647 to 1715 MeV. An energy-dependent partial-wave analysis was performed in this channel. Two allowable solutions were obtained. The first solution in this region contains the D13[t=0.08±0.01, Γ(ER)=44±11 MeV, and ER=1671±3 MeV] partial wave as the only resonant amplitude; the second solution contains both the P11[t=0.16±0.01, Γ(ER)=81±10 MeV, and ER=1671±2 MeV] and the D13[t=0.17±0.01, Γ(ER)=76±5 MeV, and ER=1655±2 MeV] partial wave as resonant.
No description provided.
LAMBDA DECAY-ASYMMETRY PARAMETER TIMES COEFFICIENTS OF ASSOCIATED LEGENDRE POLYNOMIAL EXPANSION.
No description provided.
Results on the channels K − p → Λ 0 η 0 , Λ 0 π 0 , Σ 0 π 0 , Λ 0 π 0 π 0 and Σ 0 π 0 π 0 are obtained in a K − p formation experiment using 1 million photographs taken in a heavy liquid bubble chamber filled with a CF 3 BrC 3 H 8 mixture. The results are compared with hydrogen bubble chamber (HBC) experiments and with experiments having full or partial gamma-ray detection. Our Λ 0 π 0 and Λ 0 + neutral cross section agree with HBC results. Our Σ 0 π 0 cross section does not exhibit a bump at 1670 MeV as previously seen in HBC experiments. Our Λ 0 π 0 π 0 data are dominated by a Σ (1385) π 0 production. Our Σ 0 π 0 π 0 data is consistent with the presence of some Σ (1405) π 0 production.
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic scattering of negative kaons on protons are presented for 13 incident laboratory momenta between 1094 MeV/c and 1377 MeV/c. The data show the characteristic forward diffraction-like peak and backward dip and are adequately described in shape by certain published partial-wave analyses of the N system.
No description provided.
No description provided.
No description provided.
Cross sections of the reaction K − p → π + π − π 0 Λ are determined in a bubble chamber study at 10 incoming beam momenta between 1.425 GeV/ c and 1.800 GeV/ c . For the subsample K − p → ωΛ , cross sections and angular distributions are presented together with their Legendre polynomial expansions and those of the single and joint density matrix elements. An energy dependent partial-wave analysis is performed including earlier data. The data is well fitted by constant background amplitudes in the outgoing S, P and D waves plus two I = 0 resonances in this region, the well established G 7 Λ(2100) and the P 3 Λ(1870).
No description provided.
No description provided.
LEGENDRE POLYNOMIAL EXPANSION COEFFICIENTS OF D(SIG)/DOMEGA.
K − p reactions have been studied at 13 different incident momenta between 1138 and 1434 MeV/ c . This interval corresponds to a mass of the K − p system varying from 1858 to 1993 MeV. About 300 000 photographs were taken in the 81 cm Saclay hydrogen bubble chamber exposed to a separated K − beam at the CERN proton-synchrotron. A total of about 44 000 events were analyzed, from which partial and differential cross sections were determined. Polarizations were obtained for the two-body reactions where the decay of the Λ or Σ hyperon allowed their measurement. Data for the two-body channels are presented here as well as for the main quasi-two-body reactions.
PARTIAL CROSS SECTIONS. DATA AT 1.305 TO 1.434 GEV/C FOR FINAL STATES K- P, K- P PI0 AND K- N PI+ COME FROM THE HAIFA GROUP, S. DADO ET AL.
No description provided.
No description provided.
Measurements of K − p elastic scattering have been carried out at 14 momenta between 610 MeV/ c and 943 MeV/ c over the angular range −0.9 < cos θ < 0.9. The results agree well with the best existing data and have significantly smaller errors.
No description provided.
DIFFERENTIAL CROSS SECTION AT 0 DEG CALCULATED FROM DISPERSION RELATIONS AND AT 180 DEG INTERPOLATED FROM BUBBLE CHAMBER MEASUREMENTS.
LEGENDRE POLYNOMIAL FIT, INCLUDING FORWARD AND BACKWARD POINTS.