Charge correlations using the balance function in Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 723 (2013) 267-279, 2013.
Inspire Record 1211186 DOI 10.17182/hepdata.60298

In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this Letter, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity ($\Delta\eta$) and azimuthal angle ($\Delta\varphi$) in Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in $\Delta\varphi$ but fails to describe the correlations in $\Delta\eta$. A thermal blast-wave model incorporating local charge conservation and tuned to describe the $p_{\rm T}$ spectra and v$_2$ measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with $\sqrt{s_{\rm NN}}$: the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in $\Delta\eta$ and $\Delta\varphi$ with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy--ion collision.

8 data tables

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 0-5%. Also shown in the second column is the result from the mixed data set.

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 30-40%.

The Balance Function as a function of the relative pseudorapidity of two charged particles for the centrality class 70-80%.

More…

Underlying event characteristics and their dependence on jet size of charged-particle jet events in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 86 (2012) 072004, 2012.
Inspire Record 1125575 DOI 10.17182/hepdata.58995

Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.

165 data tables

Mean value of N(C=CHARGED) v jet PT for R=0.2.

Mean value of N(C=CHARGED) v jet PT for R=0.4.

Mean value of N(C=CHARGED) v jet PT for R=0.6.

More…