Search for collectivity with azimuthal J/$\psi$-hadron correlations in high multiplicity p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 and 8.16 TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Lett.B 780 (2018) 7-20, 2018.
Inspire Record 1624550 DOI 10.17182/hepdata.79406

We present a measurement of azimuthal correlations between inclusive J/$\psi$ and charged hadrons in p-Pb collisions recorded with the ALICE detector at the CERN LHC. The J/$\psi$ are reconstructed at forward (p-going, 2.03 $<$ y $<$ 3.53) and backward (Pb-going, $-$4.46 $<$ y $<$ $-$2.96) rapidity via their $\mu^+\mu^-$ decay channel, while the charged hadrons are reconstructed at mid-rapidity ($|\eta|$ $<$ 1.8). The correlations are expressed in terms of associated charged-hadron yields per J/$\psi$ trigger. A rapidity gap of at least 1.5 units is required between the trigger J/$\psi$ and the associated charged hadrons. Possible correlations due to collective effects are assessed by subtracting the associated per-trigger yields in the low-multiplicity collisions from those in the high-multiplicity collisions. After the subtraction, we observe a strong indication of remaining symmetric structures at $\Delta\varphi$ $\approx$ 0 and $\Delta\varphi$ $\approx$ $\pi$, similar to those previously found in two-particle correlations at middle and forward rapidity. The corresponding second-order Fourier coefficient ($v_2$) in the transverse momentum interval between 3 and 6 GeV/$c$ is found to be positive with a significance of about 5$\sigma$. The obtained results are similar to the J/$\psi$ $v_2$ coefficients measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, suggesting a common mechanism at the origin of the J/$\psi$ $v_2$.

4 data tables

$v_2^{J/\psi}${2,sub} in bins of $p_T^{J/\psi}$ for p-Pb collisions in proton-going direction at $\sqrt{s_{NN}}$ = 5.02 TeV. The quoted global systematic uncertainties correspond to the combined statistical and systematic uncertainties of the measured $v_2^{tracklet}$ coefficient. The results are obtained by subtracting associated per-trigger yields in low-multiplicity (40-100% V0M) collisions from the yields in high-multiplicity (0-20% V0M) collisions.

$v_2^{J/\psi}${2,sub} in bins of $p_T^{J/\psi}$ for p-Pb collisions in Pb-going direction at $\sqrt{s_{NN}}$ = 5.02 TeV. The quoted global systematic uncertainties correspond to the combined statistical and systematic uncertainties of the measured $v_2^{tracklet}$ coefficient. The results are obtained by subtracting associated per-trigger yields in low-multiplicity (40-100% V0M) collisions from the yields in high-multiplicity (0-20% V0M) collisions.

$v_2^{J/\psi}${2,sub} in bins of $p_T^{J/\psi}$ for p-Pb collisions in proton-going direction at $\sqrt{s_{NN}}$ = 8.16 TeV. The quoted global systematic uncertainties correspond to the combined statistical and systematic uncertainties of the measured $v_2^{tracklet}$ coefficient. The results are obtained by subtracting associated per-trigger yields in low-multiplicity (40-100% V0M) collisions from the yields in high-multiplicity (0-20% V0M) collisions.

More…