The differential cross section of π+p elastic scattering has been measured in two high-statistics bubble-chamber exposures at laboratory beam momenta of 3.7 and 7.1 GeV/c. A new feature suggested by these data is a dip in dσdu at −u≃3 GeV2. This dip corresponds well to the third zero of J0(b−u′), where ℏcb=1 fm. The effective u-channel Regge trajectory computed for these two energies has a slope of 0.22 ± 0.26.
No description provided.
We present cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3095 MeV. The ψ(3095) resonance is established as having an assignment JPC=1−−. The mass is 3095 ±4 MeV. The partial width to electrons is Γe=4.8±0.6 keV and the total width Γ=69±15 keV. Total rates and interference measurements for the lepton channels are in accord with μ−e universality.
No description provided.
None
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
The analysis of 1466 events of the type e + e − → μ ± μ ± , in the time-lifke range from 1.44 to 9.00 GeV 2 , sh that the absolute value of the cross-section and its energy dependence follow QED expectations within (± 3.2%) and (± 1.2%), respectively.
The cross section of the reaction $e^+ e^- \to \mu^\pm \mu^\mp$ integrated over the experimental apparatus at 14 values of the colliding beam energy $E$ corresponding to total centre-of-mass energy $\sqrt{s}=2E$ from 1.2 to 3.0 GeV.
No description provided.
No description provided.
No description provided.
A partial wave analysis of the reaction π + n → π + π − π 0 p yields an A 0 2 production cross section of 225 ± 30μb for momentum transfer squared < 1 (GeV/ c ) 2 ; the differential cross-section and density matrix are presented and compared with ω 0 production in the light of theoretical models.
Axis error includes +- 10/10 contribution.
ASSUMING NO POPULATION OF HELICITY 2 DENSITY MATRIX ELEMENTS IN T-CHANNEL FRAME. THIS MM = 1+, 1-, 2+, 2- NOTATION REFERS TO THAT SUM OR DIFFERENCE OF HELICITY M DENSITY MATRIX ELEMENTS CORRESPONDING ASYMPTOTICALLY TO NATURAL (+) OR UNNATURAL (-) PARITY EXCHANGE.
We have measured the total and differential cross-sections for coherently photoproduced ϱ, ω and ϱ′ on deuterium at 7.5 GeV. Using VDM relations, we have obtained γ ω 2 / γ ϱ 2 = 7.1 ± 1.5, σ T ( ϱ d) = (54 ± 2) mb and σ T ( ω d) = (56 ± 5) mb. Assuming the amplitude for ϱ′ production via an intermediate ϱ 0 to be small and that the amplitudes for ϱp and ϱ′p elastic scattering are comparable, we found γ ϱ ′ 2 / γ ϱ 2 = 6.0 ± 1.2 and σ T ( ϱ ′d) = (47 ± 6) mb.
No description provided.
FROM AN EXPONENTIAL FIT WITH DEUTERON FORM FACTOR.
Strong evidence is presented for quasi-two-body production of a π + p enhancement with mass 1881±6MeV and width 219±23MeV, recoiling off vector mesons ϱ O and ω from π + p interactions at 7.1 GeV/ c and K * o (890) from K + p interactions at 12 GeV/ c . The most probable J P assignment for this object is 7/2 + , making it a likely candidate for the Regge recurrence of Δ(1236).
JACKSON FRAME.
JACKSON FRAME.
The inclusive reaction K + p → K 0 + X is studied at 5, 8.2 and 16 GeV/ c . The energy dependence and the shapes of inclusive spectra in the central region are found to be consistent with double-Regge expansion. With the values obtained for the parameters of the Regge expansion, prediction are made for the behaviour of the cross section at higher energies.
No description provided.
No description provided.
No description provided.
Angular distributions of π + and K + p elastic scattering have been measured for an incident beam momentum of 10.0 GeV/ c . For π + p elastic scattering almost the complete angular distribution was measured. The angular distribution of proton-proton elastic scattering was measured for an incident momentum of 9.0 GeV/ c in the interval of the four-momentum transfer squared from 0.7 (GeV/ c ) 2 to 5.0 (GeV/ v ) 2 . For π + p elastic scattering the structures at − t = 2.8 (GeV/ c ) 2 and − t = 4.8 (GeV/ c ) 2 are less pronounced than at lower momenta. The cross section for scattering at 90° in the c.m. system is of the order of 1 nb/GeV/ c ) 2 . For K + p elastic scattering is a break in the angular distribution around − t = 3 (GeV/ c ) 2 . The differential cross sections for proton-proton elastic scattering decrease smoothly with increasing momentum transfers.
S=19.667 GEV**2, U=-T-17.867 GEV**2.
S=19.91 GEV**2, U=-T-17.704 GEV**2.
S=18.74 GEV**2.