Search for new neutral Higgs bosons through the H$\to$ ZA $\to \ell^{+}\ell^{-} \mathrm{b\bar{b}}$ process in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 055, 2020.
Inspire Record 1764795 DOI 10.17182/hepdata.90710

This paper reports on a search for an extended scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy $\sqrt{s} = $ 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model.

10 data tables

The dijet mass distribution in data and simulated background events after requiring all the analysis selections, for μμ + ee events. The various signal hypotheses displayed have been scaled to a cross section of 1 pb for display purposes.

The llbb mass distribution in data and simulated background events after requiring all the analysis selections, for μμ + ee events. The various signal hypotheses displayed have been scaled to a cross section of 1 pb for display purposes.

The rho distributions for the same-flavour category events corresponding to a signal hypothesis with mH = 261 GeV and mA = 150 GeV. The signal is normalised to its theoretical cross section.

More…

Observation of the $\Lambda_\mathrm{b}^0 \to$ J/$\psi \Lambda \phi$ decay in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 802 (2020) 135203, 2020.
Inspire Record 1764794 DOI 10.17182/hepdata.93065

The observation of the $\Lambda_\mathrm{b}^0 \to$J/$\psi \Lambda \phi$ decay is reported using proton-proton collision data collected at $\sqrt{s} =$ 13 TeV by the CMS experiment at the LHC in 2018, corresponding to an integrated luminosity of 60 fb$^{-1}$. The ratio of the branching fractions $\mathcal{B}(\Lambda_\mathrm{b}^0 \to$J/$\psi \Lambda \phi)/\mathcal{B}(\Lambda_\mathrm{b}^0\to\psi \Lambda)$ is measured to be (8.26$\pm$0.90 (stat) $\pm$ 0.68 (syst) $\pm$ 0.11 $(\mathcal{B}))\times $10$^{-2}$, where the first uncertainty is statistical, the second is systematic, and the last uncertainty reflects the uncertainties in the world-average branching fractions of $\phi$ and $\psi$(2S) decays to the reconstructed final states.

1 data table

The measured ratio of branching fractions


Search for dijet resonances using events with three jets in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135448, 2020.
Inspire Record 1764796 DOI 10.17182/hepdata.91058

A search for a narrow resonance with a mass between 350 and 700 GeV, and decaying into a pair of jets, is performed using proton-proton collision events containing at least three jets. The data sample corresponds to an integrated luminosity of 18.3 fb$^{-1}$ recorded at $\sqrt{s} =$ 13 TeV with the CMS detector. Data are collected with a technique known as "data scouting", in which the events are reconstructed, selected, and recorded at a high rate in a compact form by the high-level trigger. The three-jet final state provides sensitivity to lower resonance masses than in previous searches using the data scouting technique. The spectrum of the dijet invariant mass, calculated from the two jets with the largest transverse momenta in the event, is used to search for a resonance. No significant excess over a smoothly falling background is found. Limits at 95% confidence level are set on the production cross section of a narrow dijet resonance and compared with the cross section of a vector dark matter mediator coupling to dark matter particles and quarks. Translating to a model where the narrow vector resonance interacts only with quarks, upper limits on this coupling range between 0.10 and 0.15, depending on the resonance mass. These results represent the most stringent upper limits in the mass range between 350 and 450 GeV obtained with a flavor-inclusive dijet resonance search.

6 data tables

Dijet mass spectrum (points) compared to a fitted parameterization of the background (solid curve), where the fit is performed in the range 290 < $m_{jj}$ < 1000 GeV in the background-only hypothesis. The horizontal bars show the widths of each bin in dijet mass. The dashed lines represent the dijet mass distribution from 400, 550, and 700 GeV resonance signals expected to be excluded at 95% CL by this analysis.

Upper limits at 95% CL on the product of the cross section, branching fraction, and acceptance as a function of resonance mass for a narrow vector resonance decaying into a pair of quark jets. The acceptance is calculated for the analysis selection, namely three wide jets with $p_{\mathrm{T}}$ > 72 GeV and |$\eta$| < 2.5, and |$\eta_{1}$ − $\eta_{2}$| < 1.1. The observed limits (solid curve), expected limits (dashed curve) and their variation at the 1 and 2 standard deviation levels (shaded bands) are shown. The dashed-dotted curve shows the expected cross section times acceptance for a DM mediator.

Figure 3: Upper limits at 95% CL on the universal quark coupling $g'_{\mathrm{q}}$ , as a function of resonance mass, for a narrow vector resonance that only couples to quarks. The observed limits (solid curve), expected limits (dashed curve) and their variation at the 1 and 2 standard deviation levels (shaded bands) are shown. The dashed-dotted curve shows the coupling strength for which the cross section for dijet production in this model is the same as for a DM mediator.

More…

Investigation of the p-$\Sigma^{0}$ interaction via femtoscopy in pp collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 805 (2020) 135419, 2020.
Inspire Record 1762369 DOI 10.17182/hepdata.94238

This Letter presents the first direct investigation of the p-$\Sigma^{0}$ interaction, using the femtoscopy technique in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV measured by the ALICE detector. The $\Sigma^{0}$ is reconstructed via the decay channel to $\Lambda \gamma$, and the subsequent decay of $\Lambda$ to p$\pi^-$. The photon is detected via the conversion in material to e$^{+}$e$^{-}$ pairs exploiting the unique capability of the ALICE detector to measure electrons at low transverse momenta. The measured p-$\Sigma^{0}$ correlation indicates a shallow strong interaction. The comparison of the data to several theoretical predictions obtained employing the $Correlation~Analysis~Tool~using~the~Schr\"odinger~Equation$ (CATS) and the Lednick\'y-Lyuboshits approach shows that the current experimental precision does not yet allow to discriminate between different models, as it is the case for the available scattering and hypernuclei data. Nevertheless, the p-$\Sigma^{0}$ correlation function is found to be sensitive to the strong interaction, and driven by the interplay of the different spin and isospin channels. This pioneering study demonstrates the feasibility of a femtoscopic measurement in the p-$\Sigma^{0}$ channel and with the expected larger data samples in LHC Run 3 and Run 4, the p-$\Sigma^{0}$ interaction will be constrained with high precision.

2 data tables

Measured p$-$p $\oplus$ $\overline{\mathrm{p}}-\overline{\mathrm{p}}$ correlation function.

Measured correlation function of p$-\Sigma^{0}$p $\oplus$ $\overline{\mathrm{p}}-\overline{\Sigma^{0}}$


Studies of charm quark diffusion inside jets using PbPb and pp collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 102001, 2020.
Inspire Record 1763389 DOI 10.17182/hepdata.88286

The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with $p_\mathrm{T}^\mathrm{jet}$$>$ 60 GeV and D$^0$ mesons with $p_\mathrm{T}^\mathrm{D}$$>$ 4 GeV in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV, recorded by the CMS detector at the LHC. The radial distribution of D$^0$ mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as to the energy loss and diffusion processes undergone by its parent parton inside the strongly interacting medium produced in PbPb collisions. When compared to Monte Carlo event generators, the radial distribution in pp collisions is found to be well-described by PYTHIA, while the slope of the distribution predicted by SHERPA is steeper than that of the data. In PbPb collisions, compared to the pp results, the D$^0$ meson distribution for 4 $<$$p_\mathrm{T}^\mathrm{D}$$<$ 20 GeV hints at a larger distance on average with respect to the jet axis, reflecting a diffusion of charm quarks in the medium created in heavy ion collisions. At higher $p_\mathrm{T}^\mathrm{D}$, the PbPb and pp radial distributions are found to be similar.

2 data tables

Distribution of $\mathrm{D^{0}}$ mesons in jets, as a function of the distance from the jet axis ($r$) for $4 < p_{\mathrm{T}^{\mathrm{D}}} < 20 \mathrm{GeV/}c$ measured in pp and PbPb collisions at 5.02 TeV.

Distribution of $\mathrm{D^{0}}$ mesons in jets, as a function of the distance from the jet axis ($r$) for $p_{\mathrm{T}^{\mathrm{D}}} > 20 \mathrm{GeV/}c$ measured in pp and PbPb collisions at 5.02 TeV.


Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS ALFA spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2020) 042, 2020.
Inspire Record 1762584 DOI 10.17182/hepdata.93063

A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

3 data tables

Hadron-level differential SD cross section as a function of Delta Eta.

Hadron-level differential SD cross section as a function of t.

Hadron-level differential SD cross section as a function of log_10 xi.


Jet-hadron correlations measured relative to the second order event plane in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 101 (2020) 064901, 2020.
Inspire Record 1762358 DOI 10.17182/hepdata.93229

The Quark Gluon Plasma (QGP) produced in ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20 < $p_{\rm{T}}^{\rm{jet}}$ < 40 GeV/$c$ as a function of the associated particle momentum. The reaction plane fit (RPF) method is used in this analysis to remove the flow modulated background. The analysis of angular correlations for different orientations of the jet relative to the second order event plane allows for the study of the path length dependence of medium modifications to jets. We present the dependence of azimuthal angular correlations of charged hadrons with respect to the angle of the axis of a reconstructed jet relative to the event plane in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. The dependence of particle yields associated with jets on the angle of the jet with respect to the event plane is presented. Correlations at different angles relative to the event plane are compared through ratios and differences of the yield. No dependence of the results on the angle of the jet with respect to the event plane is observed within uncertainties, which is consistent with no significant path length dependence of the medium modifications for this observable.

58 data tables

The near-side and away-side yield vs $p_{T}^{assoc}$ for $20<p_T^{jet}<40$ GeV/$c$ full jets of 30-50% centrality in Pb-Pb collisions. The background uncertainty is non-trivially correlated point-to-point. The correlated systematic uncertainties come from the shape uncertainty of the acceptance correction. There is an additional 5% global scale uncertainty.

The differences between out-of-plane and in-plane yields and mid-plane and in-plane yields on near-side and away-side vs $p_{T}^{assoc}$ for $20<p_T^{jet}<40$ GeV/$c$ full jets of 30-50% centrality in Pb-Pb collisions. The background uncertainty is non-trivially correlated point-to-point. The correlated systematic uncertainties come from the shape uncertainty of the acceptance correction. There is an additional 5% global scale uncertainty.

The ratios of out-of-plane to in-plane yields and mid-plane to in-plane yields on near-side and away-side vs $p_{T}^{assoc}$ for $20<p_T^{jet}<40$ GeV/$c$ full jets of 30-50% centrality in Pb-Pb collisions. The background uncertainty is non-trivially correlated point-to-point. The correlated systematic uncertainties come from the shape uncertainty of the acceptance correction.

More…

Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 804 (2020) 135375, 2020.
Inspire Record 1762340 DOI 10.17182/hepdata.93887

This paper presents the first measurements of the charge independent (CI) and charge dependent (CD) two-particle transverse momentum correlators $G_{2}^{\rm CI}$ and $G_{2}^{\rm CD}$ in Pb--Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76\;\text{\TeVe}$ by the ALICE collaboration. The two-particle transverse momentum correlator $G_{2}$ was introduced as a measure of the momentum current transfer between neighbouring system cells. The correlators are measured as a function of pair separation in pseudorapidity ($\Delta \eta$) and azimuth ($\Delta \varphi$) and as a function of collision centrality. From peripheral to central collisions, the correlator $G_{2}^{\rm CI}$ exhibits a longitudinal broadening while undergoing a monotonic azimuthal narrowing. By contrast, $G_{2}^{\rm CD}$ exhibits a narrowing along both dimensions. These features are not reproduced by models such as HIJING and AMPT. However, the observed narrowing of the correlators from peripheral to central collisions is expected to result from the stronger transverse flow profiles produced in more central collisions and the longitudinal broadening is predicted to be sensitive to momentum currents and the shear viscosity per unit of entropy density $\eta/s$ of the matter produced in the collisions. The observed broadening is found to be consistent with the hypothesized lower bound of $\eta/s$ and is in qualitative agreement with values obtained from anisotropic flow measurements.

12 data tables

Two-particle transverse momentum correlation $G_{2}^{\rm CI}$ for central (0-5%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CI}$ for semi-central (30-40%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CI}$ for perippheral (70-80%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$.

More…

Evidence of rescattering effect in Pb-Pb collisions at the LHC through production of $\rm{K}^{*}(892)^{0}$ and $\phi(1020)$ mesons

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 802 (2020) 135225, 2020.
Inspire Record 1762368 DOI 10.17182/hepdata.93150

Measurements of $\rm{K}^{*}(892)^{0}$ and $\phi(1020)$ resonance production in Pb-Pb and pp collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV with the ALICE detector at the Large Hadron Collider are reported. The resonances are measured at midrapidity ($|y|$ $<$ 0.5) via their hadronic decay channels and the transverse momentum ($p_{\rm{T}}$) distributions are obtained for various collision centrality classes up to $p_{\rm{T}}$ $=$ 20 GeV$/c$. The $p_{\rm{T}}$-integrated yield ratio $\rm{K}^{*}(892)^{0}$$/$K in Pb-Pb collisions shows significant suppression relative to pp collisions and decreases towards more central collisions. In contrast, the $\phi(1020)$$/$K ratio does not show any suppression. Furthermore, the measured $\rm{K}^{*}(892)^{0}$$/$K ratio in central Pb-Pb collisions is significantly suppressed with respect to the expectations based on a thermal model calculation, while the $\phi(1020)$$/$K ratio agrees with the model prediction. These measurements are an experimental demonstration of rescattering of $\rm{K}^{*}(892)^{0}$ decay products in the hadronic phase of the collisions. The $\rm{K}^{*}(892)^{0}$$/$K yield ratios in Pb-Pb and pp collisions are used to estimate the time duration between chemical and kinetic freeze-out, which is found to be $\sim$ 4-7 fm$/c$ for central collisions. The $p_{\rm{T}}$-differential ratios of $\rm{K}^{*}(892)^{0}$$/$K, $\phi(1020)$$/$K, $\rm{K}^{*}(892)^{0}$$/\pi$, $\phi(1020)$$/\pi$, $p/$$\rm{K}^{*}(892)^{0}$ and $p/$$\phi(1020)$ are also presented for Pb-Pb and pp collisions at $\sqrt{s_{\rm{NN}}}$ $=$ 5.02 TeV. These ratios show that the rescattering effect is predominantly a low-$p_{\rm{T}}$ phenomenon.

20 data tables

$p_{\rm T}$-distributions of $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

$p_{\rm T}$-distributions of $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in pp collisions at $\sqrt{s}$ = 5.02 TeV.

$p_{\rm T}$-distributions of $\phi$ meson measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

More…

Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
JHEP 02 (2020) 077, 2020.
Inspire Record 1762347 DOI 10.17182/hepdata.94314

The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval $-1.07 < y_{\rm cms} < 0.14$ and transverse momentum interval 2 $< p_{\rm T} <$ 16 GeV/$c$. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the $p_{\rm T}$ spectra measured for different multiplicity classes with those measured in pp collisions ($Q_{\rm pPb}$) and in peripheral p-Pb collisions ($Q_{\rm CP}$). The $Q_{\rm pPb}$ results obtained are consistent with unity within uncertainties in the measured $p_{\rm T}$ interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions.

13 data tables

$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions

$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions in 0--20\% centrality

$p_{\rm T}$-differential invariant cross section of electrons from heavy-flavour hadron decays in p--Pb collisions in 20--40\% centrality

More…