A simultaneous partial-wave analysis of the three final states K + p, K ∗ (892)N and KΔ(1236) is attempted using inelastic data with large statistics at 1.21, 1.29, 1.38 and 1.69 GeV/ c as well as existing data on the elastic reaction. The constraint of unitarity, which is almost saturated by these reactions, allows one to determine the size and relative phases of the dominant partial waves and to give some limits on the others. Their variation with energy is discussed, as well as the consistency of the different sets of elastic phase shifts with the inelastic data. We also compare the predictions of the duality hypothesis with the data.
No description provided.
We have measured the reactions π±p→π±p and π+p→K+Σ+ at 5.0 GeV/c in the region 2.2<−t<3.5 (GeV/c)2. We find the minimum cross section of the dip at −t=2.8 (GeV/c)2 in π+p elastic scattering to be 0.16 ± 0.05 μb/GeV2. The π−p differential cross section exhibits similar structure, while the π+p→K+Σ+ channel shows a steady decline in cross section as |t| increases. The polarization of the Σ+ remains large and positive to at least −t=2.8 (GeV/c)2.
No description provided.
No description provided.
We studied K+p interactions at 100 GeV with the Fermi National Accelerator Laboratory 30-in. hydrogen bubble chamber and associated spark-chamber system. We find σtot(K+p)=18.7±1.8 mb and σel(K+p)=2.0±0.4 mb. We present the charged-multiplicity distribution and its moments, and the charge-transfer distribution. The average inelastic charged multiplicity is 〈nc〉=6.65±0.31 and the two-charged-particle correlation functions are f2cc=4.52±1.32 and f2−−=0.47±0.35.
No description provided.
Channel cross sections, elastic differential cross sections and single pion production mass spectra and angular distributions are presented for π − p interactions, based on 139 000 events observed at six energies in the center of mass region 1.50–1.74 GeV.
No description provided.
No description provided.
No description provided.
None
X ERROR D(THETA) = 0.2000 DEG.
Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.
'1'. '2'. '3'. '4'.
'1'.
'1'.
We report a study of 20 exclusive reactions measured at the AGS at 5.9 GeV/c incident momentum, 90° center of mass. This experiment confirms the strong quark flow dependence of two-body hadron-hadron scattering at large angle. At 9.9 GeV/c an upper limit had been set for the ratio of cross sections for (p¯p→p¯p)(pp→pp) at 90° c.m., with the ratio less than 4%. The present experiment was performed at lower energy to gain sensitivity, but was still within the fixed angle scaling region. A ratio R(p¯ppp)≈140 was measured at 5.9 GeV/c, 90° c.m. in comparison to a ratio near 1.7 for small angle scattering. In addition, many other reactions were measured, often for the first time at 90° c.m. in the scaling region, using beams of π±, K±, p, and p¯ on a hydrogen target. There are similar large differences in cross sections for other reactions: R(K−p→π+Σ−K−p→π−Σ+)≈112, for example. The relative magnitudes of the different cross sections are consistent with the dominance of quark interchange in these 90° reactions, and indicate that pure gluon exchange and quark-antiquark annihilation diagrams are much less important. The angular dependence of several elastic cross sections and the energy dependence at a fixed angle of many of the reactions are also presented.
Cross sections at 90 degrees in the centre-of-mass.
No description provided.
No description provided.
A beam of ∼200-Mev π+ mesons was defined inside the vacuum chamber of the Nevis Cyclotron. Nuclear emulsions were exposed to a flux of about 104 mesons/cm2. The plates were scanned for pion-hydrogen scatterings and 103 such events were observed in two interaction energies, 151±7 Mev and 188±8 Mev. We obtain total cross sections of 152±31 and 159±34×10−27 cm2, respectively. The data suggest that the angular distribution changes from backwards peaked to almost symmetric over this energy interval. Our observations are not in agreement with the hypothesis of a P32-wave resonance in this energy region. The best fit to the combined results includes a D-wave contribution of -5.4°, although satisfactory agreement may be obtained with only S and P waves.
Axis error includes +- 0.0/0.0 contribution (?////Due to flux, scanning efficiency, doubtful and background events, and thesmall uncertainty in the density of hydrogen in the emulsion).
The elastic scattering of 3.6 GeV/ c π + mesons by protons has been studied in a hydrogen bubble chamber experiment. The elastic cross section has a measured value of 7.07 ± 0.20 mb. The forward diffraction peak has been fitted in the region 0.05 ≦ − t ≦ 0.6 (GeV/ c ) 2 by a form (d σ /d t ) = Ae Bt , where A = 46.5 ± 1.8 mb/(GeV/ c ) 2 and B = 6.85 ± 0.20 (GeV/ c ) −2 . From this fit and the optical theorem, the magnitude of the ratio of real to imaginary forward amplitude is 0.39 ± 0.06, in reasonable agreement with dispersion relation calculations and simple Regge model predictions.
No description provided.
No description provided.
No description provided.
Total and differential cross sections are presented for the reactions K − p → K − p and K − p → K o n at 13 points in the c.m. energy range 1915–2168 MeV. An energy-dependent partial-wave analysis is carried out on these data together with the polarisation measurements of Daum et al. [1] and the total cross section measurements [2] within this energy range. The well known Σ(1915), Σ(2030) and Λ(2100) are observed and their resonance parameters measured. Structure is also found in the D 05 and F 07 waves. An SU(3) analysis of the 5 2 + octet, 7 2 + decuplet and 7 2 − singlet gives generally good agreement between theory and experiment except that the elasticity of the Σ(1915) is experimentally rather larger than predicted.
DETERMINED BY NORMALIZING AT ZERO DEG TO TOTAL CROSS SECTIONS VIA THE OPTICAL THEOREM.
THE MAXIMUM VALUE OF COS(THETA) VARIED BETWEEN 0.978 AND 0.988 (SEE TABLE 3).