Observation of four top quark production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 847 (2023) 138290, 2023.
Inspire Record 2661880 DOI 10.17182/hepdata.138420

The observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016-2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.7 $^{+3.7}_{-3.5}$ (stat) $^{+2.3}_{-1.9}$ (syst) fb, in agreement with the available standard model predictions.

2 data tables

Comparison of fit results in the channels individually and in their combination. The left panel shows the values of the measured cross section relative to the SM prediction from Ref. [6]. The right panel shows the expected and observed significance, with the printed values rounded to the first decimal.

Number of predicted and observed events in the SR-2$\ell$ and SR-3$\ell$ $t\bar{t}t\bar{t}$ classes, both before the fit to the data ("prefit") and with their best fit normalizations ("postfit"). The uncertainties in the predicted number of events include both the statistical and systematic components. The uncertainties in the total number of predicted background and background plus signal events are also given.


Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

6 data tables

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The total coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of photon-nuclear center-of-mass energy per nucleon $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$, measured in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ values used correspond to the center of each rapidity range. The theoretical uncertainties is due to the uncertainties in the photon flux.

The nuclear gluon suppression factor $R_{\mathrm{g}}^{\mathrm{Pb}}$ as a function of Bjorken $x$ extracted from the CMS measurement of the coherent $\mathrm{J}/\psi$ photoproduction in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $x$ values are evaluated at the centers of their corresponding rapidity ranges. The theoretical uncertainties are due to the uncertainties in the photon flux and the impulse approximation model.

More…

Measurement of inclusive J/$\psi$ pair production cross section in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 108 (2023) 045203, 2023.
Inspire Record 2648593 DOI 10.17182/hepdata.144368

The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.

1 data table

Inclusive JPSI pair cross section in $2.5 < y < 4.0$.


Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

48 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.

More…

First measurement of the forward rapidity gap distribution in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Rev.D 108 (2023) 092004, 2023.
Inspire Record 2624308 DOI 10.17182/hepdata.88293

For the first time at LHC energies, the forward rapidity gap spectra from proton-lead collisions for both proton and lead dissociation processes are presented. The analysis is performed over 10.4 units of pseudorapidity at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, almost 300 times higher than in previous measurements of diffractive production in proton-nucleus collisions. For lead dissociation processes, which correspond to the pomeron-lead event topology, the EPOS-LHC generator predictions are a factor of two below the data, but the model gives a reasonable description of the rapidity gap spectrum shape. For the pomeron-proton topology, the EPOS-LHC, QGSJET II, and HIJING predictions are all at least a factor of five lower than the data. The latter effect might be explained by a significant contribution of ultra-peripheral photoproduction events mimicking the signature of diffractive processes. These data may be of significant help in understanding the high energy limit of quantum chromodynamics and for modeling cosmic ray air showers.

14 data tables

Differential cross section for events with Pomeron-Lead ($\mathrm{I\!P}\mathrm{Pb}$) topology obtained at the reconstruction level for $|\eta| < 3$ region. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

Differential cross section for events with Pomeron-Proton ($\mathrm{I\!P}\mathrm{p} + \gamma \mathrm{p}$) topology obtained at the reconstruction level for $|\eta| < 3$ region. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

Reconstruction level differential cross section spectla, obtained for the central acceptance, $|\eta| < 3$, for events with Pomeron-Lead ($\mathrm{I\!P}\mathrm{Pb}$) topology compared to the to the EPOS-LHC predictions, broken down into the non-diffractive (ND), central diffractive (CD), single diffractive (SD) and double diffractive (DD) components. Forward Rapidity Gap definition: $|\eta| < 2.5$: $p_{T}^{track} < 200$ MeV and $\sum \limits_{bin} E^{PF} < 6$ GeV $|\eta| \in [2.5,3.0]$: $\sum \limits_{bin} E_{neutral}^{PF} < 13.4$ GeV

More…

Measurement of exclusive pion pair production in proton-proton collisions at $\sqrt{s}=$7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 627, 2023.
Inspire Record 2606496 DOI 10.17182/hepdata.131222

The exclusive production of pion pairs in the process $pp\to pp\pi^+\pi^-$ has been measured at $\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC, using 80 $\mu$b$^{-1}$ of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion-pion invariant mass. Cross section values of $4.8 \pm 1.0 \text{(stat.)} + {}^{+0.3}_{-0.2} \text{(syst.)}\mu$b and $9 \pm 6 \text{(stat.)} + {}^{+2}_{-2}\text{(syst.)}\mu$b are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

16 data tables

Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

More…

Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 560, 2023.
Inspire Record 2175946 DOI 10.17182/hepdata.130712

A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton+jets channel of top quark pair production ($\mathrm{t\bar{t}}$) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential $\mathrm{t\bar{t}}$ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06 $\pm$ 0.84 GeV.

14 data tables

The particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section in the fiducial region as a function of the XCone-jet mass.

Correlations between bins in the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.

The covariance matrix containing the statistical uncertainties of the particle-level $\mathrm{t}\overline{\mathrm{t}}$ differential cross section as a function of the XCone-jet mass.

More…

Azimuthal correlations in Z+jets events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 722, 2023.
Inspire Record 2172990 DOI 10.17182/hepdata.133278

The production of Z bosons associated with jets is measured in pp collisions at $\sqrt{s}$ = 13 TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV is measured for different regions of the Z boson's $p_\mathrm{T}$(Z), from lower than 10 GeV to higher than 100 GeV. The azimuthal correlation $\Delta \phi$ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $p_\mathrm{T}$(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $p_\mathrm{T}$(Z) regions.

15 data tables

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $p_T<10$ GeV

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $10<p_T<30$ GeV

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $30<p_T<50$ GeV

More…

Measurement of single top-quark production in the s-channel in proton$-$proton collisions at $\mathrm{\sqrt{s}=13}$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 191, 2023.
Inspire Record 2153660 DOI 10.17182/hepdata.133620

A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.

35 data tables

Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.

More…

Searches for additional Higgs bosons and for vector leptoquarks in $\tau\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 073, 2023.
Inspire Record 2132368 DOI 10.17182/hepdata.128147

Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.

313 data tables

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled. The peak in the expected $gg\phi$ limit is tribute to a loss of sensitivity around $90\text{ GeV}$ due to the background from $Z/\gamma^\ast\rightarrow\tau\tau$ events. Numerical values provided in this table correspond to Figure 10a of the publication.

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 10b of the publication.

Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 37 of the auxilliary material of the publication.

More…

Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

22 data tables

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

More…

Version 2
Measurement of the top quark pole mass using $\mathrm{t\bar{t}}$+jet events in the dilepton final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 077, 2023.
Inspire Record 2106483 DOI 10.17182/hepdata.127990

A measurement of the top quark pole mass $m_\mathrm{t}^\text{pole}$ in events where a top quark-antiquark pair ($\mathrm{t\bar{t}}$) is produced in association with at least one additional jet ($\mathrm{t\bar{t}}$+jet) is presented. This analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb$^{-1}$. Events with two opposite-sign leptons in the final state (e$^+$e$^-$, $\mu^+\mu^-$, e$^\pm\mu^\mp$) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the $\mathrm{t\bar{t}}$+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in $m_\mathrm{t}^\text{pole}$ = 172.93 $\pm$ 1.36 GeV.

10 data tables

Absolute differential cross section as a function of the rho observable at parton level.

Covariance matrix for the total uncertainty (i.e. fit including stat., not extrapolation) for the measurement of the absolute differential cross section as a function of the rho observable at parton level.

Covariance matrix for the statistical uncertainty for the measurement of the absolute differential cross section as a function of the rho observable at parton level.

More…

Measurement of the properties of Higgs boson production at $\sqrt{s} = 13$ TeV in the $H\to\gamma\gamma$ channel using $139$ fb$^{-1}$ of $pp$ collision data with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 088, 2023.
Inspire Record 2104770 DOI 10.17182/hepdata.129799

Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be $1.04^{+0.10}_{-0.09}$. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a $W$ or $Z$ boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a $p$-value of $93\%$. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.

13 data tables

Cross-sections times H->yy branching ratio for ggF +bbH, VBF, VH, ttH, and tH production, normalized to their SM predictions. The values are obtained from a simultaneous fit to all categories. The theory uncertainties in the predictions include uncertainties due to missing higher-order terms in the perturbative QCD calculations and choices of parton distribution functions and value of alpha_s, as well as the H->yy branching ratio uncertainty.

Correlation matrix for the measurement of production cross-sections of the Higgs boson times the H->yy branching ratio.

Best-fit values and uncertainties for STXS parameters in each of the 28 regions considered, normalized to their SM predictions. The values for the gg->H process also include the contributions from bbH production.

More…

Version 2
Search for Higgs boson pairs decaying to WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 095, 2023.
Inspire Record 2098277 DOI 10.17182/hepdata.130795

The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*$\tau\tau$, and $\tau\tau\tau\tau$ decay modes are presented. The search uses 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval $-$6.9 to 11.1 ($-$6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250-1000 GeV.

30 data tables

Distribution of an input to the BDT classifier in the $2\ell$(ss) category: The scalar $p_{T}$ sum, denoted as $H_{T}$, of the two reconstructed $\ell$ and all small-radius jets.

Distribution of an input to the BDT classifier in the $2\ell$(ss) category: The angular separation $\Delta R$ between the two $\ell$.

Distribution of an input to the BDT classifier in the $3\ell$ category: The angular separation between $\ell_{3}$ and the nearest small-radius jet (j). The $\ell_{3}$ in is defined as the $\ell$ that is not part of the opposite-sign $\ell\ell$ pair of lowest mass.

More…

Version 2
Observation of $\tau$ lepton pair production in ultraperipheral lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 151803, 2023.
Inspire Record 2094321 DOI 10.17182/hepdata.129600

We present an observation of photon-photon production of $\tau$ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404 $\mu$b$^{-1}$ collected by the CMS experiment at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The $\gamma\gamma$$\to$$\tau^+\tau^-$ process is observed for $\tau\tau$ events with a muon and three charged hadrons in the final state. The measured fiducial cross section is $\sigma(\gamma\gamma$$\to$$\tau^+\tau^-)$ = 4.8 $\pm$ 0.6 (stat) $\pm$ 0.5 (syst) $\mu$b, in agreement with leading-order QED predictions. Using $\sigma(\gamma\gamma$$\to$$\tau^+\tau^-)$, we estimate a model-dependent value of the anomalous magnetic moment of the $\tau$ lepton of $a_\tau$ = 0.001 $^{+0.055}_{-0.089}$.

4 data tables

$\gamma\gamma\to\tau\tau$ fiducial cross section

$\gamma\gamma\to\tau\tau$ fiducial cross section

Limits on anomalous magnetic moment of the tau lepton

More…

Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell-Yan production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 628, 2023.
Inspire Record 2079374 DOI 10.17182/hepdata.115656

The double differential cross sections of the Drell-Yan lepton pair ($\ell^+\ell^-$, dielectron or dimuon) production are measured as functions of the invariant mass $m_{\ell\ell}$, transverse momentum $p_\mathrm{T}(\ell\ell)$, and $\phi^*_\eta$. The $\phi^*_\eta$ observable, derived from angular measurements of the leptons and highly correlated with $p_\mathrm{T}(\ell\ell)$, is used to probe the low-$p_\mathrm{T}(\ell\ell)$ region in a complementary way. Dilepton masses up to 1 TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various $m_{\ell\ell}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3 fb$^{-1}$ of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.

77 data tables

The measured differential cross section in the $50 \le M_{ll} < 76$ GeV mass window, in bins of the dilepton transverse momentum. The values are normalized by the bin width.

The measured differential cross section in the $50 \le M_{ll} < 76$ GeV mass window, in bins of the dilepton transverse momentum. The values are normalized by the bin width. This entry contains the covariance matrix of the results.

The measured differential cross section in the $76 \le M_{ll} < 106$ GeV mass window, in bins of the dilepton transverse momentum. The values are normalized by the bin width.

More…

Cross-section measurements for the production of a $Z$ boson in association with high-transverse-momentum jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 080, 2023.
Inspire Record 2077570 DOI 10.17182/hepdata.114865

Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.

78 data tables

Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

More…

Measurement of differential cross sections for the production of a Z boson in association with jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 052004, 2023.
Inspire Record 2078067 DOI 10.17182/hepdata.115655

A measurement is presented of the production of Z bosons that decay into two electrons or muons in association with jets, in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS Collaboration at the LHC with an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are measured as a function of the transverse momentum ($p_\mathrm{T}$) of the Z boson and the transverse momentum and rapidities of the five jets with largest $p_\mathrm{T}$. The jet multiplicity distribution is measured for up to eight jets. The hadronic activity in the events is estimated using the scalar sum of the $p_\mathrm{T}$ of all the jets. All measurements are unfolded to the stable particle-level and compared with predictions from various Monte Carlo event generators, as well as with expectations at leading and next-to-leading orders in perturbative quantum chromodynamics.

70 data tables

Measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$, and breakdown of the relative uncertainty.

More…

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 04 (2023) 080, 2023.
Inspire Record 2077575 DOI 10.17182/hepdata.115142

Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.

1011 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> NLEP = 0, E or MU, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, R = 1.0, 350 GeV &lt; PT &lt; 3000 GeV, ABS ETA &lt; 2, M &gt; 50 GeV <li> NJETS &gt;= 1, R = 1.0, 500 GeV &lt; PT &lt; 3000 GeV, ABS ETA &lt; 2, M &gt; 50 GeV <li> T1, MIN ( ABS ( M - 172.5 GeV ) ), candidate JETS with PT &gt; 500 GeV <li> T2, MIN ( ABS ( M - 172.5 GeV ) ), remaining candidate JETS with PT &gt; 350 GeV <li> T1 and T2, 122.5 GeV &lt; M &lt; 222.5 GeV, ghost-matched B-HAD with PT &gt; 5 GeV </ul><br/> <i>Parton level:</i> <ul> <li> PT_T1 &gt; 500 GeV, PT_T2 &gt; 350 GeV </ul><br/> <b>Particle level:</b><br/> <u>1D:</u><br/> Spectra: <ul><br/> <li>SIG (<a href="115142?table=Table 1">Table 1</a>) <li>DSIG/DPT_TOP (<a href="115142?table=Table 2">Table 2</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 3">Table 3</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 4">Table 4</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 5">Table 5</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 6">Table 6</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 7">Table 7</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 8">Table 8</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 9">Table 9</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 10">Table 10</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 11">Table 11</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 12">Table 12</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 13">Table 13</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 14">Table 14</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 15">Table 15</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 16">Table 16</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 74">Table 74</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 75">Table 75</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 76">Table 76</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 77">Table 77</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 78">Table 78</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 79">Table 79</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 80">Table 80</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 81">Table 81</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 82">Table 82</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 83">Table 83</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 84">Table 84</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 85">Table 85</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 86">Table 86</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 87">Table 87</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 88">Table 88</a>) </ul><br/> Covariances: <ul><br/> <li>DSIG/DPT_TOP (<a href="115142?table=Table 291">Table 291</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 292">Table 292</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 293">Table 293</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 294">Table 294</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 295">Table 295</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 296">Table 296</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 297">Table 297</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 298">Table 298</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 299">Table 299</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 300">Table 300</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 301">Table 301</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 302">Table 302</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 303">Table 303</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 304">Table 304</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 305">Table 305</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 471">Table 471</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 472">Table 472</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 473">Table 473</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 474">Table 474</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 475">Table 475</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 476">Table 476</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 477">Table 477</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 478">Table 478</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 479">Table 479</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 480">Table 480</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 481">Table 481</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 482">Table 482</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 483">Table 483</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 484">Table 484</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 485">Table 485</a>) </ul><br/> <u>2D:</u><br/> Spectra: <ul><br/> <li>D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 17">Table 17</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 18">Table 18</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 19">Table 19</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 20">Table 20</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 21">Table 21</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 22">Table 22</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 23">Table 23</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 24">Table 24</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 25">Table 25</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 26">Table 26</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 27">Table 27</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 28">Table 28</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 29">Table 29</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 30">Table 30</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 31">Table 31</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 32">Table 32</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 33">Table 33</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 34">Table 34</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 35">Table 35</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 36">Table 36</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 37">Table 37</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 38">Table 38</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 39">Table 39</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 40">Table 40</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 41">Table 41</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 42">Table 42</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 43">Table 43</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 44">Table 44</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 45">Table 45</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 46">Table 46</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 47">Table 47</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 48">Table 48</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 49">Table 49</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 50">Table 50</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 51">Table 51</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 52">Table 52</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 53">Table 53</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 54">Table 54</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 55">Table 55</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 56">Table 56</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 57">Table 57</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 58">Table 58</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 59">Table 59</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 60">Table 60</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 61">Table 61</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 62">Table 62</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 63">Table 63</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 64">Table 64</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 89">Table 89</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 90">Table 90</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 91">Table 91</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 92">Table 92</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 93">Table 93</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 94">Table 94</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 95">Table 95</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 96">Table 96</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 97">Table 97</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 98">Table 98</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 99">Table 99</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 100">Table 100</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 101">Table 101</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 102">Table 102</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 103">Table 103</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 104">Table 104</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 105">Table 105</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 106">Table 106</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 107">Table 107</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 108">Table 108</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 109">Table 109</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 110">Table 110</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 111">Table 111</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 112">Table 112</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 113">Table 113</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 114">Table 114</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 115">Table 115</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 116">Table 116</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 117">Table 117</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 118">Table 118</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 119">Table 119</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 120">Table 120</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 121">Table 121</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 122">Table 122</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 123">Table 123</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 124">Table 124</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 125">Table 125</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 126">Table 126</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 127">Table 127</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 128">Table 128</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 129">Table 129</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 130">Table 130</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 131">Table 131</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 132">Table 132</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 133">Table 133</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 134">Table 134</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 135">Table 135</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 136">Table 136</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 306">Table 306</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 307">Table 307</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 308">Table 308</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 309">Table 309</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 310">Table 310</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 311">Table 311</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 312">Table 312</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 313">Table 313</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 314">Table 314</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 315">Table 315</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 316">Table 316</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 317">Table 317</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 318">Table 318</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 319">Table 319</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 320">Table 320</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 321">Table 321</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 322">Table 322</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 323">Table 323</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 324">Table 324</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 325">Table 325</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 326">Table 326</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 327">Table 327</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 328">Table 328</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 329">Table 329</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 330">Table 330</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 331">Table 331</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 332">Table 332</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 333">Table 333</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 334">Table 334</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 335">Table 335</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 336">Table 336</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 337">Table 337</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 338">Table 338</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 339">Table 339</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 340">Table 340</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 341">Table 341</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 342">Table 342</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 343">Table 343</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 344">Table 344</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 345">Table 345</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 346">Table 346</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 347">Table 347</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 348">Table 348</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 349">Table 349</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 350">Table 350</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 351">Table 351</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 352">Table 352</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 353">Table 353</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 354">Table 354</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 355">Table 355</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 356">Table 356</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 357">Table 357</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 358">Table 358</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 359">Table 359</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 360">Table 360</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 361">Table 361</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 362">Table 362</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 363">Table 363</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 364">Table 364</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 365">Table 365</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 366">Table 366</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 367">Table 367</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 368">Table 368</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 369">Table 369</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 370">Table 370</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 371">Table 371</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 372">Table 372</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 373">Table 373</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 374">Table 374</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 375">Table 375</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 376">Table 376</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 377">Table 377</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 378">Table 378</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 379">Table 379</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 380">Table 380</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 381">Table 381</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 382">Table 382</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 383">Table 383</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 384">Table 384</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 385">Table 385</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 386">Table 386</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 387">Table 387</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 388">Table 388</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 389">Table 389</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 390">Table 390</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 391">Table 391</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 392">Table 392</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 393">Table 393</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 394">Table 394</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 395">Table 395</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 396">Table 396</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 397">Table 397</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 398">Table 398</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 399">Table 399</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 400">Table 400</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 401">Table 401</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 402">Table 402</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 403">Table 403</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 404">Table 404</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 405">Table 405</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 406">Table 406</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 407">Table 407</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 408">Table 408</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 409">Table 409</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 410">Table 410</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 411">Table 411</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 412">Table 412</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 413">Table 413</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 414">Table 414</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 415">Table 415</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 416">Table 416</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 417">Table 417</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 418">Table 418</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 419">Table 419</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 420">Table 420</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 421">Table 421</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 422">Table 422</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 423">Table 423</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 424">Table 424</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 425">Table 425</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 486">Table 486</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 487">Table 487</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 488">Table 488</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 489">Table 489</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 490">Table 490</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 491">Table 491</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 492">Table 492</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 493">Table 493</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 494">Table 494</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 495">Table 495</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 496">Table 496</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 497">Table 497</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 498">Table 498</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 499">Table 499</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 500">Table 500</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 501">Table 501</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 502">Table 502</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 503">Table 503</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 504">Table 504</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 505">Table 505</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 506">Table 506</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 507">Table 507</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 508">Table 508</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 509">Table 509</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 510">Table 510</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 511">Table 511</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 512">Table 512</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 513">Table 513</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 514">Table 514</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 515">Table 515</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 516">Table 516</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 517">Table 517</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 518">Table 518</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 519">Table 519</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 520">Table 520</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 521">Table 521</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 522">Table 522</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 523">Table 523</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 524">Table 524</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 525">Table 525</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 526">Table 526</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 527">Table 527</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 528">Table 528</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 529">Table 529</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 530">Table 530</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 531">Table 531</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 532">Table 532</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 533">Table 533</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 534">Table 534</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 535">Table 535</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 536">Table 536</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 537">Table 537</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 538">Table 538</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 539">Table 539</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 540">Table 540</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 541">Table 541</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 542">Table 542</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 543">Table 543</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 544">Table 544</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 545">Table 545</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 546">Table 546</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 547">Table 547</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 548">Table 548</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 549">Table 549</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 550">Table 550</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 551">Table 551</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 552">Table 552</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 553">Table 553</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 554">Table 554</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 555">Table 555</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 556">Table 556</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 557">Table 557</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 558">Table 558</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 559">Table 559</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 560">Table 560</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 561">Table 561</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 562">Table 562</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 563">Table 563</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 564">Table 564</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 565">Table 565</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 566">Table 566</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 567">Table 567</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 568">Table 568</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 569">Table 569</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 570">Table 570</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 571">Table 571</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 572">Table 572</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 573">Table 573</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 574">Table 574</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 575">Table 575</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 576">Table 576</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 577">Table 577</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 578">Table 578</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 579">Table 579</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 580">Table 580</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 581">Table 581</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 582">Table 582</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 583">Table 583</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 584">Table 584</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 585">Table 585</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 586">Table 586</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 587">Table 587</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 588">Table 588</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 589">Table 589</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 590">Table 590</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 591">Table 591</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 592">Table 592</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 593">Table 593</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 594">Table 594</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 595">Table 595</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 596">Table 596</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 597">Table 597</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 598">Table 598</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 599">Table 599</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 600">Table 600</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 601">Table 601</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 602">Table 602</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 603">Table 603</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 604">Table 604</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 605">Table 605</a>) </ul><br/> <u>3D:</u><br/> Spectra: <ul><br/> <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 65">Table 65</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 66">Table 66</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 67">Table 67</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 68">Table 68</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 69">Table 69</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 70">Table 70</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 71">Table 71</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 72">Table 72</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 73">Table 73</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 137">Table 137</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 138">Table 138</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 139">Table 139</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 140">Table 140</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 141">Table 141</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 142">Table 142</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 143">Table 143</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 144">Table 144</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 145">Table 145</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 426">Table 426</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 427">Table 427</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 428">Table 428</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 429">Table 429</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 430">Table 430</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 431">Table 431</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 432">Table 432</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 433">Table 433</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 434">Table 434</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 435">Table 435</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 436">Table 436</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 437">Table 437</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 438">Table 438</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 439">Table 439</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 440">Table 440</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 441">Table 441</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 442">Table 442</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 443">Table 443</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 444">Table 444</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 445">Table 445</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 446">Table 446</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 447">Table 447</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 448">Table 448</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 449">Table 449</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 450">Table 450</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 451">Table 451</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 452">Table 452</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 453">Table 453</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 454">Table 454</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 455">Table 455</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 456">Table 456</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 457">Table 457</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 458">Table 458</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 459">Table 459</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 460">Table 460</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 461">Table 461</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 462">Table 462</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 463">Table 463</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 464">Table 464</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 465">Table 465</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 466">Table 466</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 467">Table 467</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 468">Table 468</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 469">Table 469</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 470">Table 470</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 606">Table 606</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 607">Table 607</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 608">Table 608</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 609">Table 609</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 610">Table 610</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 611">Table 611</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 612">Table 612</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 613">Table 613</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 614">Table 614</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 615">Table 615</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 616">Table 616</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 617">Table 617</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 618">Table 618</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 619">Table 619</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 620">Table 620</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 621">Table 621</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 622">Table 622</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 623">Table 623</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 624">Table 624</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 625">Table 625</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 626">Table 626</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 627">Table 627</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 628">Table 628</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 629">Table 629</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 630">Table 630</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 631">Table 631</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 632">Table 632</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 633">Table 633</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 634">Table 634</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 635">Table 635</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 636">Table 636</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 637">Table 637</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 638">Table 638</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 639">Table 639</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 640">Table 640</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 641">Table 641</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 642">Table 642</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 643">Table 643</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 644">Table 644</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 645">Table 645</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 646">Table 646</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 647">Table 647</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 648">Table 648</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 649">Table 649</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 650">Table 650</a>) </ul><br/> <b>Parton level:</b><br/> <u>1D:</u><br/> Spectra: <ul><br/> <li>SIG (<a href="115142?table=Table 146">Table 146</a>) <li>DSIG/DPT_TOP (<a href="115142?table=Table 147">Table 147</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 148">Table 148</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 149">Table 149</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 150">Table 150</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 151">Table 151</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 152">Table 152</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 153">Table 153</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 154">Table 154</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 155">Table 155</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 156">Table 156</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 157">Table 157</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 158">Table 158</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 159">Table 159</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 160">Table 160</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 161">Table 161</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 219">Table 219</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 220">Table 220</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 221">Table 221</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 222">Table 222</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 223">Table 223</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 224">Table 224</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 225">Table 225</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 226">Table 226</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 227">Table 227</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 228">Table 228</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 229">Table 229</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 230">Table 230</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 231">Table 231</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 232">Table 232</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 233">Table 233</a>) </ul><br/> Covariances: <ul><br/> <li>DSIG/DPT_TOP (<a href="115142?table=Table 651">Table 651</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 652">Table 652</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 653">Table 653</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 654">Table 654</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 655">Table 655</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 656">Table 656</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 657">Table 657</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 658">Table 658</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 659">Table 659</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 660">Table 660</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 661">Table 661</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 662">Table 662</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 663">Table 663</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 664">Table 664</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 665">Table 665</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 831">Table 831</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 832">Table 832</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 833">Table 833</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 834">Table 834</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 835">Table 835</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 836">Table 836</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 837">Table 837</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 838">Table 838</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 839">Table 839</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 840">Table 840</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 841">Table 841</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 842">Table 842</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 843">Table 843</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 844">Table 844</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 845">Table 845</a>) </ul><br/> <u>2D:</u><br/> Spectra: <ul><br/> <li>D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 162">Table 162</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 163">Table 163</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 164">Table 164</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 165">Table 165</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 166">Table 166</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 167">Table 167</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 168">Table 168</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 169">Table 169</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 170">Table 170</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 171">Table 171</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 172">Table 172</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 173">Table 173</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 174">Table 174</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 175">Table 175</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 176">Table 176</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 177">Table 177</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 178">Table 178</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 179">Table 179</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 180">Table 180</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 181">Table 181</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 182">Table 182</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 183">Table 183</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 184">Table 184</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 185">Table 185</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 186">Table 186</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 187">Table 187</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 188">Table 188</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 189">Table 189</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 190">Table 190</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 191">Table 191</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 192">Table 192</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 193">Table 193</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 194">Table 194</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 195">Table 195</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 196">Table 196</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 197">Table 197</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 198">Table 198</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 199">Table 199</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 200">Table 200</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 201">Table 201</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 202">Table 202</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 203">Table 203</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 204">Table 204</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 205">Table 205</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 206">Table 206</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 207">Table 207</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 208">Table 208</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 209">Table 209</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 234">Table 234</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 235">Table 235</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 236">Table 236</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 237">Table 237</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 238">Table 238</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 239">Table 239</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 240">Table 240</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 241">Table 241</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 242">Table 242</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 243">Table 243</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 244">Table 244</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 245">Table 245</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 246">Table 246</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 247">Table 247</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 248">Table 248</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 249">Table 249</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 250">Table 250</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 251">Table 251</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 252">Table 252</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 253">Table 253</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 254">Table 254</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 255">Table 255</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 256">Table 256</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 257">Table 257</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 258">Table 258</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 259">Table 259</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 260">Table 260</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 261">Table 261</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 262">Table 262</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 263">Table 263</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 264">Table 264</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 265">Table 265</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 266">Table 266</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 267">Table 267</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 268">Table 268</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 269">Table 269</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 270">Table 270</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 271">Table 271</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 272">Table 272</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 273">Table 273</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 274">Table 274</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 275">Table 275</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 276">Table 276</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 277">Table 277</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 278">Table 278</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 279">Table 279</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 280">Table 280</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 281">Table 281</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 666">Table 666</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 667">Table 667</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 668">Table 668</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 669">Table 669</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 670">Table 670</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 671">Table 671</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 672">Table 672</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 673">Table 673</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 674">Table 674</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 675">Table 675</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 676">Table 676</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 677">Table 677</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 678">Table 678</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 679">Table 679</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 680">Table 680</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 681">Table 681</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 682">Table 682</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 683">Table 683</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 684">Table 684</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 685">Table 685</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 686">Table 686</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 687">Table 687</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 688">Table 688</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 689">Table 689</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 690">Table 690</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 691">Table 691</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 692">Table 692</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 693">Table 693</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 694">Table 694</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 695">Table 695</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 696">Table 696</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 697">Table 697</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 698">Table 698</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 699">Table 699</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 700">Table 700</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 701">Table 701</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 702">Table 702</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 703">Table 703</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 704">Table 704</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 705">Table 705</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 706">Table 706</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 707">Table 707</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 708">Table 708</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 709">Table 709</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 710">Table 710</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 711">Table 711</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 712">Table 712</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 713">Table 713</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 714">Table 714</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 715">Table 715</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 716">Table 716</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 717">Table 717</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 718">Table 718</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 719">Table 719</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 720">Table 720</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 721">Table 721</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 722">Table 722</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 723">Table 723</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 724">Table 724</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 725">Table 725</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 726">Table 726</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 727">Table 727</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 728">Table 728</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 729">Table 729</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 730">Table 730</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 731">Table 731</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 732">Table 732</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 733">Table 733</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 734">Table 734</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 735">Table 735</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 736">Table 736</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 737">Table 737</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 738">Table 738</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 739">Table 739</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 740">Table 740</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 741">Table 741</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 742">Table 742</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 743">Table 743</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 744">Table 744</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 745">Table 745</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 746">Table 746</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 747">Table 747</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 748">Table 748</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 749">Table 749</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 750">Table 750</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 751">Table 751</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 752">Table 752</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 753">Table 753</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 754">Table 754</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 755">Table 755</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 756">Table 756</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 757">Table 757</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 758">Table 758</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 759">Table 759</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 760">Table 760</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 761">Table 761</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 762">Table 762</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 763">Table 763</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 764">Table 764</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 765">Table 765</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 766">Table 766</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 767">Table 767</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 768">Table 768</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 769">Table 769</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 770">Table 770</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 771">Table 771</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 772">Table 772</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 773">Table 773</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 774">Table 774</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 775">Table 775</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 776">Table 776</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 777">Table 777</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 778">Table 778</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 779">Table 779</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 780">Table 780</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 781">Table 781</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 782">Table 782</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 783">Table 783</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 784">Table 784</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 785">Table 785</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 846">Table 846</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 847">Table 847</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 848">Table 848</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 849">Table 849</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 850">Table 850</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 851">Table 851</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 852">Table 852</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 853">Table 853</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 854">Table 854</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 855">Table 855</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 856">Table 856</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 857">Table 857</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 858">Table 858</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 859">Table 859</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 860">Table 860</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 861">Table 861</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 862">Table 862</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 863">Table 863</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 864">Table 864</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 865">Table 865</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 866">Table 866</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 867">Table 867</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 868">Table 868</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 869">Table 869</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 870">Table 870</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 871">Table 871</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 872">Table 872</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 873">Table 873</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 874">Table 874</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 875">Table 875</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 876">Table 876</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 877">Table 877</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 878">Table 878</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 879">Table 879</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 880">Table 880</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 881">Table 881</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 882">Table 882</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 883">Table 883</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 884">Table 884</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 885">Table 885</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 886">Table 886</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 887">Table 887</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 888">Table 888</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 889">Table 889</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 890">Table 890</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 891">Table 891</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 892">Table 892</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 893">Table 893</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 894">Table 894</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 895">Table 895</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 896">Table 896</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 897">Table 897</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 898">Table 898</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 899">Table 899</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 900">Table 900</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 901">Table 901</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 902">Table 902</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 903">Table 903</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 904">Table 904</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 905">Table 905</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 906">Table 906</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 907">Table 907</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 908">Table 908</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 909">Table 909</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 910">Table 910</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 911">Table 911</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 912">Table 912</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 913">Table 913</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 914">Table 914</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 915">Table 915</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 916">Table 916</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 917">Table 917</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 918">Table 918</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 919">Table 919</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 920">Table 920</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 921">Table 921</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 922">Table 922</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 923">Table 923</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 924">Table 924</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 925">Table 925</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 926">Table 926</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 927">Table 927</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 928">Table 928</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 929">Table 929</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 930">Table 930</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 931">Table 931</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 932">Table 932</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 933">Table 933</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 934">Table 934</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 935">Table 935</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 936">Table 936</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 937">Table 937</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 938">Table 938</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 939">Table 939</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 940">Table 940</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 941">Table 941</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 942">Table 942</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 943">Table 943</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 944">Table 944</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 945">Table 945</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 946">Table 946</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 947">Table 947</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 948">Table 948</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 949">Table 949</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 950">Table 950</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 951">Table 951</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 952">Table 952</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 953">Table 953</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 954">Table 954</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 955">Table 955</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 956">Table 956</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 957">Table 957</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 958">Table 958</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 959">Table 959</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 960">Table 960</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 961">Table 961</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 962">Table 962</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 963">Table 963</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 964">Table 964</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 965">Table 965</a>) </ul><br/> <u>3D:</u><br/> Spectra: <ul><br/> <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 210">Table 210</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 211">Table 211</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 212">Table 212</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 213">Table 213</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 214">Table 214</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 215">Table 215</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 216">Table 216</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 217">Table 217</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 218">Table 218</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 282">Table 282</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 283">Table 283</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 284">Table 284</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 285">Table 285</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 286">Table 286</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 287">Table 287</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 288">Table 288</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 289">Table 289</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 290">Table 290</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 786">Table 786</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 787">Table 787</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 788">Table 788</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 789">Table 789</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 790">Table 790</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 791">Table 791</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 792">Table 792</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 793">Table 793</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 794">Table 794</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 795">Table 795</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 796">Table 796</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 797">Table 797</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 798">Table 798</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 799">Table 799</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 800">Table 800</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 801">Table 801</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 802">Table 802</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 803">Table 803</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 804">Table 804</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 805">Table 805</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 806">Table 806</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 807">Table 807</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 808">Table 808</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 809">Table 809</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 810">Table 810</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 811">Table 811</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 812">Table 812</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 813">Table 813</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 814">Table 814</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 815">Table 815</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 816">Table 816</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 817">Table 817</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 818">Table 818</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 819">Table 819</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 820">Table 820</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 821">Table 821</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 822">Table 822</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 823">Table 823</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 824">Table 824</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 825">Table 825</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 826">Table 826</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 827">Table 827</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 828">Table 828</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 829">Table 829</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 830">Table 830</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 966">Table 966</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 967">Table 967</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 968">Table 968</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 969">Table 969</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 970">Table 970</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 971">Table 971</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 972">Table 972</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 973">Table 973</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 974">Table 974</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 975">Table 975</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 976">Table 976</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 977">Table 977</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 978">Table 978</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 979">Table 979</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 980">Table 980</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 981">Table 981</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 982">Table 982</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 983">Table 983</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 984">Table 984</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 985">Table 985</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 986">Table 986</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 987">Table 987</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 988">Table 988</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 989">Table 989</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 990">Table 990</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 991">Table 991</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 992">Table 992</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 993">Table 993</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 994">Table 994</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 995">Table 995</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 996">Table 996</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 997">Table 997</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 998">Table 998</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 999">Table 999</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1000">Table 1000</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1001">Table 1001</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1002">Table 1002</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1003">Table 1003</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1004">Table 1004</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1005">Table 1005</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1006">Table 1006</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1007">Table 1007</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1008">Table 1008</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1009">Table 1009</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1010">Table 1010</a>) </ul><br/>

Fiducial phase-space cross-section at particle level.

$p_{T}^{t}$ absolute differential cross-section at particle level.

More…

Measurement of the production of charm jets tagged with ${\rm D^0}$ mesons in pp collisions at $\sqrt{s}$ = 5.02 and 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 133, 2023.
Inspire Record 2070667 DOI 10.17182/hepdata.134031

The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5<p_{\rm T;chjet}<50$ GeV/$c$, pseudorapidity $|\eta_{\rm jet}| <0.9-R$, and with the jet resolution parameters $R$ = 0.2, 0.4, 0.6. The distribution of the jet momentum fraction carried by a ${\rm D^0}$ meson along the jet axis ($z^{\rm ch}_{||}$) was measured in the range $0.4 < z^{\rm ch}_{||} < 1.0$ in four ranges of the jet transverse momentum. Comparisons of results for different collision energies and jet resolution parameters are also presented. The measurements are compared to predictions from Monte Carlo event generators based on leading-order and next-to-leading-order perturbative quantum chromodynamics calculations. A generally good description of the main features of the data is obtained in spite of a few discrepancies at low $p_{\rm T;chjet}$. Measurements were also done for $R = 0.3$ at $\sqrt{s}$ = 5.02 TeV and are shown along with their comparisons to theoretical predictions in an appendix to this paper.

11 data tables

$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=13$ TeV.

$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=5.02$ TeV.

Ratio of $p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons in pp collisions at $\sqrt{s}=13$ TeV to $\sqrt{s}=5.02$ TeV for $R=0.2$, $0.4$, and $0.6$.

More…

Measurement of $\psi$(2S) production as a function of charged-particle pseudorapidity density in pp collisions at $\sqrt{s}$ = 13 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV with ALICE at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2023) 147, 2023.
Inspire Record 2070433 DOI 10.17182/hepdata.135830

Production of inclusive charmonia in pp collisions at center-of-mass energy of $\sqrt{s}$ = 13 TeV and p-Pb collisions at center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/$\psi$, $\psi$(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame $2.5 < y_{\rm cms} < 4.0$ for pp collisions, and $2.03 < y_{\rm cms} < 3.53$ and $-4.46 < y_{\rm cms} < -2.96$ for p-Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity ($|\eta|<1.0$). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The $\psi$(2S) yield increases with the charged-particle pseudorapidity density. The ratio of $\psi$(2S) over J/$\psi$ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/$\psi$ and $\psi$(2S) yields with respect to charged-particle pseudorapidity density. Results for the $\psi$(2S) yield and its ratio with respect to J/$\psi$ agree with available model calculations.

6 data tables

Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.

Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.

Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.

More…

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

31 data tables

Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

More…

Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

154 data tables

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.

More…

Search for resonances decaying to three W bosons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 129 (2022) 021802, 2022.
Inspire Record 2015402 DOI 10.17182/hepdata.102646

A search for resonances decaying into a W boson and a radion, where the radion decays into two W bosons, is presented. The data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$ recorded in proton-proton collisions with the CMS detector at $\sqrt{s} =$ 13 TeV. One isolated charged lepton is required, together with missing transverse momentum and one or two massive large-radius jets, containing the decay products of either two or one W bosons, respectively. No excess over the background estimation is observed. The results are combined with those from a complementary channel with an all-hadronic final state, described in an accompanying paper. Limits are set on parameters of an extended warped extra-dimensional model. These searches are the first of their kind at the LHC.

11 data tables

Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR4.

Observed upper limits at 95\% \CL on the signal cross section $\times$ branching fraction as functions of the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ resonance masses after combinign with an analysis of the all-hadronic final state.

Expected median lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane after combinign with an analysis of the all-hadronic final state.

More…

Search for charged-lepton flavor violation in top quark production and decay in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2022) 082, 2022.
Inspire Record 2014124 DOI 10.17182/hepdata.106000

Results are presented from a search for charged-lepton flavor violating (CLFV) interactions in top quark production and decay in pp collisions at a center-of-mass energy of 13 TeV. The events are required to contain one oppositely charged electron-muon pair in the final state, along with at least one jet identified as originating from a bottom quark. The data correspond to an integrated luminosity of 138 fb$^{-1}$, collected by the CMS experiment at the LHC. This analysis includes both the production (q $\to$ e$\mu$t) and decay (t $\to$ e$\mu$q) modes of the top quark through CLFV interactions, with q referring to a u or c quark. These interactions are parametrized using an effective field theory approach. With no significant excess over the standard model expectation, the results are interpreted in terms of vector-, scalar-, and tensor-like CLFV four-fermion effective interactions. Finally, observed exclusion limits are set at 95% confidence levels on the respective branching fractions of a top quark to an e$\mu$ pair and an up (charm) quark of 0.13 $\times$ 10$^{-6}$ (1.31 $\times$ 10$^{-6}$), 0.07 $\times$ 10$^{-6}$ (0.89 $\times$ 10$^{-6}$), and 0.25 $\times$ 10$^{-6}$ (2.59 $\times$ 10$^{-6}$) for vector, scalar, and tensor CLFV interactions, respectively.

3 data tables

The expected and observed upper limits on the signal cross sections.

The expected and observed upper limits on CLFV Wilson coefficients. The Limits on the Wilson coefficients are extracted from the upper limits on the cross sections. Since the cross sections are quadratic functions of the Wilson coefficients, the limits lie on an ellipse given by the coordinate intersections.

The expected and observed upper limits on top quark CLFV branching fractions. The Limits on the top quark CLFV branching fractions are extracted from the upper limits on the Wilson coefficients.


Version 3
Measurement of the inclusive and differential $\mathrm{t\bar{t}}\gamma$ cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 091, 2022.
Inspire Record 2013377 DOI 10.17182/hepdata.113657

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions in the decay channel with two oppositely charged leptons (e$^\pm\mu^\mp$, e$^+$e$^-$, or $\mu^+\mu^-$). The measurement is performed using 138 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} =$ 13 TeV during the 2016-2018 data-taking period of the CERN LHC. A fiducial phase space is defined such that photons radiated by initial-state particles, top quarks, or any of their decay products are included. An inclusive cross section of 175.2 $\pm$ 2.5 (stat) $\pm$ 6.3 (syst) fb is measured in a signal region with at least one jet coming from the hadronization of a bottom quark and exactly one photon with transverse momentum above 20 GeV. Differential cross sections are measured as functions of several kinematic observables of the photon, leptons, and jets, and compared to standard model predictions. The measurements are also interpreted in the standard model effective field theory framework, and limits are found on the relevant Wilson coefficients from these results alone and in combination with a previous CMS measurement of the $\mathrm{t\bar{t}}\gamma$ production process using the lepton+jets final state.

64 data tables

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $e\mu$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $ee$ channel, after the fit to the data.

Observed and predicted event yields as a function of $p_{T}(\gamma)$ in the $\mu\mu$ channel, after the fit to the data.

More…

Search for resonances decaying to three W bosons in the hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 106 (2022) 012002, 2022.
Inspire Record 2000816 DOI 10.17182/hepdata.115182

A search for Kaluza-Klein excited vector boson resonances, $W_\mathrm{KK}$, decaying in cascade to three W bosons via a scalar radion $R, W_\mathrm{KK}\to WR \to WWW$, with two or three massive jets is presented. The search is performed with proton-proton collision data recorded at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the CERN LHC, during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Two final states are simultaneously probed, one where the two W bosons produced by the R decay are reconstructed as separate, large-radius, massive jets, and one where they are merged in a single large-radius jet. The observed data are in agreement with the standard model expectations. Limits are set on the product of the $W_\mathrm{KK}$ resonance cross section and branching fraction to three W bosons in an extended warped extra-dimensional model and are the first of their kind at the LHC.

38 data tables

Distribution of $m_{\mathrm{jj}}$ for preselected events with $\mathrm{N}_{j}$ = 2

Distribution of $m_{\mathrm{j}}$ for preselected events with $\mathrm{N}_{j}$ = 2

Distribution of the deep-WH value of the highest-mass jet with $m_{\mathrm{j}}$ > 100 GeV for preselected events with $\mathrm{N}_{j}$ = 2

More…

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Version 2
Measurement of Higgs boson decay into $b$-quarks in associated production with a top-quark pair in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 097, 2022.
Inspire Record 1967501 DOI 10.17182/hepdata.114360

The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.

74 data tables

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $300\le p_T^H<450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Comparison between data and prediction for the DNN $P(H)$ output for the Higgs boson candidate prior to any fit to the data in the single-lepton boosted channel for $p_{{T}}^{H}\ge 450$ GeV. The dashed line shows the ${t\bar {t}H}$ signal distribution normalised to the total background prediction. The uncertainty band includes all uncertainties and their correlations.

Performance of the Higgs boson reconstruction algorithms. For each row of `truth' ${\hat{p}_{{T}}^{H}}$, the matrix shows (in percentages) the fraction of all Higgs boson candidates with reconstructed $p_T^H$ in the various bins of the dilepton (left), single-lepton resolved (middle) and boosted (right) channels.

More…

Version 2
Observation of triple J/$\psi$ meson production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature Phys. 19 (2023) 338 338-350, 2023.
Inspire Record 1965242 DOI 10.17182/hepdata.114984

Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering - referred to as single-parton scattering - leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/$\psi$ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process - reconstructed through the decays of J/$\psi$ mesons into pairs of oppositely charged muons - with a statistical significance above five standard deviations. We measured the inclusive fiducial cross section to be 272 $^{+141}_{-104}$ (stat) $\pm$ 17 (syst) fb, and compared it to theoretical expectations for triple-J/$\psi$ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross sections, double- and triple-parton scattering are the dominant contributions for the measured process.

6 data tables

Kinematic properties of each one of the three \JPsi mesons selected in the 5? 6? signal events.

Dimuon invariant mass ($m$), proper decay-length ($L$), transverse momentum ($p_{T}$), rapidity ($y$), and azimuthal angle ($\phi$) of each of the three $J/\psi$ candidates measured in the six triple-$J/\psi$ events passing our selection criteria.

DPS effective cross section

More…

Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 107, 2022.
Inspire Record 1961177 DOI 10.17182/hepdata.105865

Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9 $_{-7.3}^{+7.5}$ (stat) $_{-6.0}^{+7.3}$ (syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37 $_{-0.42}^{+0.56}$ (stat) ${}_{-0.13}^{+0.27}$ (syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 $\pm$ 0.16 (stat) $\pm$ 0.06 (syst), in agreement with SM predictions.

73 data tables

Numerical results of inclusive cross section measurements. Each row represents a measurement: "tZq" for fully inclusive, "tZq_top" for the top quark channel, "tZq_antitop" for the top antiquark channel, "ratio" for the ratio measurement. The columns are the central value, statistical error up/down, systematic error up/down. All values are in fb, except for the ratio (dimensionless).

Numerical representation of impact plot.

Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 2-3 jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the prefit version.

More…

Observation of a structure in the M$_{p\eta}$ invariant mass distribution near 1700 MeV/$c^2$ in the $\mathbf{\gamma p \rightarrow p \pi^0 \eta} $ reaction

The CBELSA/TAPS collaboration Metag, V. ; Nanova, M. ; Hartmann, J. ; et al.
Eur.Phys.J.A 57 (2021) 325, 2021.
Inspire Record 1987678 DOI 10.17182/hepdata.115572

The reaction $\gamma p \rightarrow p \pi^0 \eta$ has been studied with the CBELSA/TAPS detector at the electron stretcher accelerator ELSA in Bonn for incident photon energies from threshold up to 3.1 GeV. This paper has been motivated by the recently claimed observation of a narrow structure in the M$_{N\eta}$ invariant mass distribution at a mass of 1678 MeV/$c^2$. The existence of this structure cannot be confirmed in the present work. Instead, for E$_{\gamma}$ = 1400 - 1500 MeV and the cut M$_{p\pi^0} \le 1190 $ MeV/$c^2$ a statistically significant structure in the M$_{p\eta}$ invariant mass distribution near 1700 MeV/$c^2$ is observed with a width of $\Gamma\approx 35$ MeV/$c^2$ while the mass resolution is $\sigma_{res}$ = 5 MeV/$c^2$. Increasing the incident photon energy from 1420 to 1540 MeV this structure shifts in mass from $\approx$ 1700MeV/c$^2$ to $\approx$ 1725 MeV/$c^2$; the width increases to about 50 MeV/$c^2$ and decreases thereafter. The cross section associated with this structure reaches a maximum of $\approx$ 100 nb around E$_{\gamma} \approx$ 1490 MeV (W $\approx $ 1920 MeV), which coincides with the $p a_0$ threshold. Three scenarios are discussed which might be the origin of this structure in the M$_{p\eta}$ invariant mass distribution. The most likely interpretation is that it is due to a triangular singularity in the $\gamma p \rightarrow p a_0 \rightarrow p \pi^0 \eta$ reaction

32 data tables

Differential cross section for $\pi^0$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.

Differential cross section for $\eta$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.

Differential cross section for $p$ in the $\gamma p$ for the incident photon energy range of $E_\gamma$ = 1400-1500 MeV.

More…

Observation of tW production in the single-lepton channel in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2021) 111, 2021.
Inspire Record 1917152 DOI 10.17182/hepdata.102957

A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb$^{-1}$ collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant $\mathrm{t\bar{t}}$ background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 $\pm$ 4 (stat) $\pm$ 12 (syst) pb, consistent with the standard model.

2 data tables

The observed and theoretical cross section. In the observed, the first uncertainty is statistical, the second uncertianty is the systematic. In the expected, the first uncertainty is due to scale variations, the second due to the choice of PDF.

The systematic sources considered in the analysis and their relative contribution to the observed uncertainty. The uncertainties are divided by normalization, experimental, theoretical and statistical uncertainties, with each section ordered by their contribution to the total uncertainty.


Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Measurement of differential $\text{t}\overline{\text{t}}$ production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 092013, 2021.
Inspire Record 1901295 DOI 10.17182/hepdata.102956

Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.

362 data tables

differential cross sections.

differential cross sections.

differential cross sections.

More…

Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $\tau$ leptons in pp collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 128 (2022) 081805, 2022.
Inspire Record 1894790 DOI 10.17182/hepdata.105961

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the $\tau$ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event if any. The analysis is performed using proton-proton data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two $\tau$ leptons, and they constitute a significant improvement over measurements in other final states in events with a large jet multiplicity or with a Lorentz-boosted Higgs boson.

7 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each jet multiplicity bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The fiducial differential signal strength and cross section in each leading jet pT bin. Both the unregularized and regularized signal strengths are given; they do not include uncertainties in the SM signal normalization. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Measurement of the production cross section of pairs of isolated photons in $pp$ collisions at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 169, 2021.
Inspire Record 1887997 DOI 10.17182/hepdata.104925

A measurement of prompt photon-pair production in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $p_\mathrm{T,\gamma_{1(2)}} > 40(30)$ GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.

9 data tables

Differential cross section as a function of $p_{T,\gamma_{1}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Differential cross section as a function of $p_{T,\gamma_{2}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.

Integrated fiducial cross section measured in data and from different predictions.

More…

Version 2
Measurement of the inclusive and differential $\mathrm{t\overline{t}}\gamma$ cross sections in the single-lepton channel and EFT interpretation at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 180, 2021.
Inspire Record 1876579 DOI 10.17182/hepdata.102876

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.

80 data tables

Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.

Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.

Distribution of $m_{T}(W)$ in the $N_{jet}\geq 3$ signal region.

More…

Measurement of the $t\bar{t}t\bar{t}$ production cross section in $pp$ collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 118, 2021.
Inspire Record 1869695 DOI 10.17182/hepdata.105039

A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$^{-1}$ is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain $b$-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26$^{+17}_{-15}$ fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0$\pm$2.4 fb.

76 data tables

The results of the fitted signal strength $\mu$ in the 1L/2LOS channel

The results of fitted inclusive ${t\bar{t}t\bar{t}}$ cross-section in the 1L/2LOS channel

Ranking of the nuisance parameters included in the fit according to their impact on the signal strength $\mu$. The impact of each nuisance parameter, $\Delta\mu$, is computed by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the nuisance parameter to its best-fit value, $\hat{\theta}$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta\theta$ ($\pm \Delta\hat{\theta}$).

More…

Measurement of the electroweak production of Z$\gamma$ and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 072001, 2021.
Inspire Record 1869513 DOI 10.17182/hepdata.102954

The first observation of the electroweak (EW) production of a Z boson, a photon, and two forward jets (Z$\gamma$jj) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. A data set corresponding to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC in 2016-2018 is used. The measured fiducial cross section for EW Z$\gamma$jj is $\sigma_{\mathrm{EW}}$ = 5.21 $\pm$ 0.52 (stat) $\pm$ 0.56 (syst) fb = 5.21 $\pm$ 0.76 fb. Single-differential cross sections in photon, leading lepton, and leading jet transverse momenta, and double-differential cross sections in $m_{\mathrm{jj}}$ and $\lvert\Delta\eta_{\mathrm{jj}}\rvert$ are also measured. Exclusion limits on anomalous quartic gauge couplings are derived at 95% confidence level in terms of the effective field theory operators $\mathrm{M}_{0}$ to $\mathrm{M}_{5}$, $\mathrm{M}_{7}$, $\mathrm{T}_{0}$ to $\mathrm{T}_{2}$, and $\mathrm{T}_{5}$ to $\mathrm{T}_{9}$.

11 data tables

The measured inclusive fiducial cross section for the pure electroweak Z$\gamma$jj production. The uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO.

The measured inclusive fiducial cross section for the combined QCD-induced and electroweak Z$\gamma$jj production. The uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO.

The measured single-differential cross sections in photon transverse momenta for the pure electroweak Z$\gamma$jj production. The total uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO. The last bin includes overflow events.

More…

Version 2
Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 737, 2021.
Inspire Record 1853014 DOI 10.17182/hepdata.100351

Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.

152 data tables

The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.

The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.

List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.

More…

Study of Drell-Yan dimuon production in proton-lead collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 182, 2021.
Inspire Record 1849180 DOI 10.17182/hepdata.88292

Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.

28 data tables

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of dimuon invariant mass. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $15<m_{\mu\mu}<60$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

Differential fiducial cross section (without the acceptance correction) for the DY process measured in the muon channel, as a function of rapidity in the centre-of-mass frame for $60<m_{\mu\mu}<120$ GeV. The quoted error is the quadratic sum of the statistical and systematic uncertainties. The global normalisation uncertainty of 3.5% is listed separately.

More…

Evidence for X(3872) in PbPb collisions and studies of its prompt production at $\sqrt{s_\mathrm{NN}}=$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 128 (2022) 032001, 2022.
Inspire Record 1848438 DOI 10.17182/hepdata.93882

The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (PbPb) collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV per nucleon pair, using the decay chain X(3872) $\to$ J$/\psi\, \pi^+\pi^- \to$ $\mu^+\mu^-\pi^+\pi^-$. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7 nb$^{-1}$. The measurement is performed in the rapidity and transverse momentum ranges $|y|$ $\lt$ 1.6 and 15 $\lt$ $p_\mathrm{T}$ $\lt$ 50 GeV$/c$. The significance of the inclusive X(3872) signal is 4.2 standard deviations. The prompt X(3872) to $\psi$(2S) yield ratio is found to be $\rho^\mathrm{PbPb} = $ 1.08 $\pm$ 0.49 (stat) $\pm$ 0.52 (syst), to be compared with typical values of 0.1 for pp collisions. This result provides a unique experimental input to theoretical models of the X(3872) production mechanism, and of the nature of this exotic state.

1 data table

The yield ratio $\rho^{\mathrm{PbPb}}$ of prompt X(3872) over $\psi(\mathrm{2S})$ production in PbPb collisions at 5.02 TeV


Measurement of W$\gamma$ production cross section in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on effective field theory coefficients

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 126 (2021) 252002, 2021.
Inspire Record 1844754 DOI 10.17182/hepdata.102462

A fiducial cross section for W$\gamma$ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137 fb$^{-1}$ of data collected using the CMS detector at the LHC. The W $\to$ e$\nu$ and $\mu\nu$ decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.

4 data tables

The measured Wgamma fiducial cross section and corresponding theoretical predictions from MadGraph5_aMC@NLO and POWHEG. The MadGraph5_aMC@NLO prediction includes 0 and 1 jets in the matrix element at NLO in QCD. The POWHEG prediction uses the C-NLO method described in https://arxiv.org/abs/1408.5766. The cross section is measured in a fiducial region defined with isolated prompt photons and isolated prompt dressed leptons (electrons and muons). A lepton or photon is considered isolated if the pt sum of all stable particles within Delta R = 0.4, divided by the pt of the lepton or photon, is less than 0.5. A lepton is considered prompt if it originates from the hard process or from the decay of a tau lepton that originates from the hard process; a photon is considered prompt if it originates from the hard process or an FSR or ISR process involving a particle that originates from the hard process. A lepton is dressed by adding to its four-momentum the four-momenta of all photons within DeltaR = 0.1; this procedure is intended to restore the lepton to its pre-FSR state. The fiducial region kinematic requirements are: photon and lepton |eta|<2.5 and pt > 25 GeV, and DeltaR(lepton,photon) > 0.5.

Data and SM expected event yields corresponding to photon pt distribution used to extract aTGC limits.

95% CL limits on effective field theory parameters in Wgamma events. No unitarity regularisation scheme is applied. All parameters are fixed to their SM values except the one that is fitted.

More…

Version 2
Measurement of the Z boson differential production cross section using its invisible decay mode (Z$\nu\bar{\nu}$) in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 205, 2021.
Inspire Record 1837084 DOI 10.17182/hepdata.96028

Measurements of the total and differential fiducial cross sections for the Z boson decaying into two neutrinos are presented at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were collected by the CMS detector in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. In these measurements, events are selected containing an imbalance in transverse momentum and one or more energetic jets. The fiducial differential cross section is measured as a function of the Z boson transverse momentum. The results are combined with a previous measurement of charged-lepton decays of the Z boson.

24 data tables

The measured and predicted inclusive fiducial cross sections in fb. The experimental measurement includes both statistical and systematics uncertainties. The theoretical prediction includes both the QCD scale and PDF uncertainties.

The measured and predicted inclusive fiducial cross sections in fb. The experimental measurement includes both statistical and systematics uncertainties. The theoretical prediction includes both the QCD scale and PDF uncertainties.

Experimental uncertainties affecting transfer factors in the analysis that is used to estimate the W background in the signal region (SR). The number of W boson events are denoted as $W_{SR}$ for the SR and in analogy as $W_{\mu\nu}$ ($W_{e\nu}$) for the single-muon (single-electron) control region (CR).

More…

Observation and measurement of forward proton scattering in association with lepton pairs produced via the photon fusion mechanism at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 261801, 2020.
Inspire Record 1820312 DOI 10.17182/hepdata.116547

The observation of forward proton scattering in association with lepton pairs ($e^+e^-+p$ or $\mu^+\mu^-+p$) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of $\sqrt{s} = 13$ TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 57 (123) candidates in the $ee+p$ ($\mu\mu+p$) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding five standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to $\sigma_{ee+p}$ = 11.0 $\pm$ 2.6 (stat.) $\pm$ 1.2 (syst.) $\pm$ 0.3 (lumi.) fb and $\sigma_{\mu\mu+p}$ = 7.2 $\pm$ 1.6 (stat.) $\pm$ 0.9 (syst.) $\pm$ 0.2 (lumi.) fb in the dielectron and dimuon channel, respectively.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Observation of electroweak production of W$\gamma$ with two jets in proton-proton collisions at $\sqrt{s}= $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 811 (2020) 135988, 2020.
Inspire Record 1812981 DOI 10.17182/hepdata.95243

A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak W$\gamma$jj production in a restricted fiducial region is measured as 20.4 $\pm$ 4.5 fb and the total cross section for W$\gamma$ production in association with 2 jets in the same fiducial region is 108 $\pm$ 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators.

3 data tables

The measured EW W$\gamma$jj fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources. The EW W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.6.0 at LO. Within the acceptance, the theoretical cross section is 17.0 fb.

The measured W$\gamma$jj cross section, combining the EW and QCD-induced production mechanisms. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources. The QCD W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.4.2 at NLO in QCD. Within the acceptance, the theoretical cross section of QCD W$\gamma$jj is 72.7 fb. The EW W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.6.0 at LO. Within the acceptance, the theoretical cross section of EW W$\gamma$jj is 17.0 fb. The total EW+QCD W$\gamma$ jj cross section is the sum of the two processes.

Constraints on dimension-8 effective field theory operators.


Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 812 (2021) 135992, 2021.
Inspire Record 1811911 DOI 10.17182/hepdata.95433

Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} = $ 13 TeV collected with the CMS detector in 2016-2018, and corresponding to an integrated luminosity of 137 fb$^{-1}$. The search is performed in the fully leptonic final state ZZ $\to$ $\ell\ell\ell'\ell'$, where $\ell,\ell' = $ e, $\mu$. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is $\sigma_{\mathrm{EW}}$(pp $\to$ ZZjj $\to$ $\ell\ell\ell'\ell'$jj) = 0.33 $^{+0.11}_{-0.10}$ (stat) $^{+0.04}_{-0.03}$ (syst) fb in the most inclusive volume, in agreement with the standard model prediction of 0.275 $\pm$ 0.021 fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.

5 data tables

Data from paper Table 3. Measured and expected fiducial cross-sections in the ZZjj inclusive fiducial region.

Data from paper Table 3. Measured and expected fiducial cross-sections in the VBS-enriched loose fiducial region.

Data from paper Table 3. Measured and expected fiducial cross-sections in the VBS-enriched tight fiducial region.

More…

Search for heavy resonances decaying into a photon and a hadronically decaying Higgs boson in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 251802, 2020.
Inspire Record 1811594 DOI 10.17182/hepdata.95538

This Letter presents a search for the production of new heavy resonances decaying into a Higgs boson and a photon using proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC. The data correspond to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed by reconstructing hadronically decaying Higgs boson $(H\to b\bar{b})$ candidates as single large-radius jets. A novel algorithm using information about the jet constituents in the center-of-mass frame of the jet is implemented to identify the two $b$-quarks in the single jet. No significant excess of events is observed above the expected background. Upper limits are set on the production cross-section times branching fraction for narrow spin-1 resonances decaying into a Higgs boson and a photon in the resonance mass range from 0.7 to 4 TeV, cross-sections times branching fraction are excluded between 11.6 fb and 0.11 fb at a 95% confidence level.

5 data tables

Data distribution of the reconstructed $m_{J\gamma}$ and background only fitting in the single-b-tagged category. Background and signal fit functions are provided in Table 3. Background event yields are calculated using the fitted background function.

Data distribution of the reconstructed $m_{J\gamma}$ and background only fitting in the double-b-tagged category. Background and signal fit functions are provided in Table 3. Background event yields are calculated using the fitted background function.

Background and signal functions, with their fit parameters. For the background function, the parameters are fitted from the data distribution. The "Yield" is the total number of events in data in the single-b-tagged or double-b-tagged fitting range. For the single-b-tagged category, the fitting range is [1400GeV, 4200GeV], and for the double-b-tagged category, it is [600GeV, 4200GeV]. The background event yields per bin in Table 1 and Table 2 are calculated using the data yield multiplied by the integral of the normalized background function in that bin. For the signal function, the value for the parameters are from parametrisation studies and CB stands for a Crystal-Ball function. Signal distributions in Figure 1a and Figure 1b are normalized to an arbitrary yield, for illustration purpose.

More…