A MEASUREMENT OF THE PROTON STRUCTURE FUNCTIONS USING INELASTIC ELECTRON SCATTERING

Mestayer, M.D. ;
PhD Thesis, 1978.
Inspire Record 131529 DOI 10.17182/hepdata.14
54 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic electron scattering on helium 4

Repellin, J.P. ; Lehmann, P. ; Lefrançois, J. ; et al.
Phys.Lett. 16 (1965) 169-170, 1965.
Inspire Record 1385171 DOI 10.17182/hepdata.30380

None

1 data table

Axis error includes +- 2/2 contribution.


Measurement of proton and neutron electromagnetic form-factors at squared four momentum transfers up to 3-GeV/c$^2$

Bartel, W. ; Busser, F.W. ; Dix, W.r. ; et al.
Nucl.Phys.B 58 (1973) 429-475, 1973.
Inspire Record 83685 DOI 10.17182/hepdata.69173

Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.

14 data tables

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).

More…

Measurement of the form-factor ratios for D/s+ --> Phi l+ nu/l.

The E791 collaboration Aitala, E.M. ; Amato, S. ; Anjos, J.C. ; et al.
Phys.Lett.B 450 (1999) 294-300, 1999.
Inspire Record 480733 DOI 10.17182/hepdata.42137

We have measured the form factor ratios r_V = V(0)/A_1(0) and r_2 = A_2(0)/A_1(0) for the decay D_s^+ -> phi ell^+ nu_ell, phi -> K^+ K^-, using data from charm hadroproduction experiment E791 at Fermilab. Results are based on 144 signal and 22 background events in the electron channel and 127 signal and 34 background events in the muon channel. We combine the measurements from both lepton channels to obtain r_V = 2.27 +- 0.35 +- 0.22 and r_2 = 1.57 +- 0.25 +- 0.19.

1 data table

With a vetor meson in the final state, there are four formfactors, V(Q2), A1(Q2), A2(Q2), A3(Q2). Charge conjugated states are understood.


Measurement of the energy dependence of the form-factor f(+) in K0(e3) decay.

The CPLEAR collaboration Apostolakis, A. ; Aslanides, E. ; Backenstoss, G. ; et al.
Phys.Lett.B 473 (2000) 186-192, 2000.
Inspire Record 513277 DOI 10.17182/hepdata.49003

Neutral-kaon decays to π e ν were analysed to determine the q 2 dependence of the K 0 e3 electroweak form factor f + . Based on 365 612 events, this form factor was found to have a linear dependence on q 2 with a slope λ + =0.0245±0.0012 stat ±0.0022 syst .

1 data table

The Q2 dependence of FORMFACTOR+ is usually approximated as: FORMFACTOR+(Q2) = CONST * ( 1 + Q2 * CONST(NAME=LAMBDA+)/M(C=PI)**2).


Measurements of the magnetic form-factor of the proton for timelike momentum transfers

Andreotti, M ; Bagnasco, S ; Baldini, W ; et al.
Phys.Lett.B 559 (2003) 20-25, 2003.
Inspire Record 617594 DOI 10.17182/hepdata.27006

Fermilab experiment E835 has measured the cross section for the reaction p ̄ p→e + e − at s =11.63, 12.43, 14.40 and 18.22 GeV 2 . From the analysis of the 66 observed events new high-precision measurements of the proton magnetic form factor are obtained.

3 data tables

The measured cross section in the kinematic range defined by COS(THETA).

The proton magnetic form factor calculated assuming the equality of the electric and magnetic form factors.

The proton magnetic form factor calculated assuming a negligible electric contribution.


Measurement of tensor polarization elastic electron deuteron scattering at large momentum transfer.

The JLAB t(20) collaboration Abbott, D. ; Ahmidouch, A. ; Anklin, H. ; et al.
Phys.Rev.Lett. 84 (2000) 5053-5057, 2000.
Inspire Record 523086 DOI 10.17182/hepdata.40433

Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of the magnetic form factor of the proton in the timelike region at large momentum transfer.

The E835 collaboration Ambrogiani, M. ; Bagnasco, S. ; Baldini, W. ; et al.
Phys.Rev.D 60 (1999) 032002, 1999.
Inspire Record 496464 DOI 10.17182/hepdata.42105

The cross section for the reaction p¯p→e+e− has been measured at s=8.8, 10.8, 12.4, 13.1, and 14.4 GeV2 by Fermilab experiment E835. A non-magnetic spectrometer is used to identify the e+e− final states generated by the antiproton beam intersecting an internal hydrogen gas jet target. From the analysis of the 144 observed events, new high-precision measurements of the proton magnetic form factor for timelike momentum transfers are obtained.

3 data tables

No description provided.

Assuming ABS(FORMFACTOR(NAME=ELECTRIC)) = ABS(FORMFACTOR(NAME=MAGNETIC)).

Neglecting contribution for FORMFACTOR(NAME=ELECTRIC).


Measurement of T(20) in elastic electron deuteron scattering.

Bouwhuis, M. ; Alarcon, R. ; Botto, T. ; et al.
Phys.Rev.Lett. 82 (1999) 3755-3758, 1999.
Inspire Record 477409 DOI 10.17182/hepdata.31372

We report on a measurement of the tensor-analyzing power T20 in elastic electron-deuteron scattering in the range of four-momentum transfer from 1.8 to 3.2 fm-1. Electrons of 704 MeV were scattered from a polarized deuterium internal target. The tensor polarization of the deuterium nuclei was determined with an ion-extraction system, allowing an absolute measurement of T20. The data are described well by a non-relativistic calculation that includes the effects of meson-exchange currents.

1 data table

No description provided.


Measurement of the probability of the decay K+ ---> pi0 pi0 e+ neutrino

Barmin, V.V. ; Barylov, V.G. ; Davidenko, G.V. ; et al.
Sov.J.Nucl.Phys. 48 (1988) 1032-1034, 1988.
Inspire Record 457321 DOI 10.17182/hepdata.40034

None

1 data table

No description provided.


Measurements of |V(cb)|, form factors and branching fractions in the decays anti-B0 --> D*+ l- anti-nu/l and anti-B0 --> D+ l- anti-nu/l.

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 395 (1997) 373-387, 1997.
Inspire Record 425943 DOI 10.17182/hepdata.34082

Two samples of exclusive semileptonic decays, 579 B 0 → D ∗+ ℓ − ν ℓ events and 261 B 0 → D + ℓ − ν ℓ events, are selected from approximately 3.9 million hadronic Z decays collected by the ALEPH detector at LEP. From the reconstructed differential decay rate of each sample, the product of the hadronic form factor F (ω) at zero recoil of the D (∗)+ meson and the CKM matrix element | V cb | are measured to be F D ∗+ (1)|V cb | = (31.9 ± 1.8 stat ± 1.9 syst ) × 10 −3 , F D + (1)| V cb | = (27.8 ± 6.8 stat ± 6.5 syst ) × 10 −3 . The ratio of the form factors F D + (1) and F D ∗+ (1) is measured to be F D + (1) F D ∗+ (1) = 0.87 ± 0.22 stat ± 0.21 syst . A value of | V cb | is extracted from the two samples, using theoretical constraints on the slope and curvature of the hadronic form factors and their normalization at zero recoil, with the result | V cb | = (34.4 ± 1.6 stat ± 2.3 syst ± 1.4 th ) × 10 −3 . The branching fractions are measured from the two integrated spectra to be Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (5.53 ± 0.26 stat ±0.52 syst ) %, Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (2.35 ± 0.20 stat ± 0.44 syst ) %.

3 data tables

The formfactors are evaluated at zero recoil of D meson. Two different methods are used (see text for details). VCB is the KCM matrix element. The formfactor fitted to dependence: FF(OM) = FF(1)*(1-CONST*(OM-1)).

VCB is the KCM matrix element.

VCB is the KCM matrix element.


A STUDY OF THE STRONG INTERACTION FORM-FACTORS FOR K0(L) ---> pi mu neutrino AND K0(L) ---> pi electron neutrino

Dally, E. ; Innocenti, P. ; Seppi, E. ; et al.
Phys.Lett.B 41 (1972) 647-651, 1972.
Inspire Record 74541 DOI 10.17182/hepdata.28214

We have extracted the strong interaction form factors from K o e3 and K o μ3 data of our previously reported K o L experiment in a manner which does not assume an explicit q 2 = ( p K − p π ) 2 dependence. We present the unparameterized form factors ƒ + (q 2 ) from the K o L → πeν and K o L → πμν modes and ƒ o (q 2 ) and ξ ( q 2 ) from the K o L → πμν data. A comparison of these unparameterized results is made with the results of the Dalitz plot analyses.

1 data table

The conventional form factor f+ is studied.


Direct Measurement of the pi- Form-Factor.

Dally, E.B. ; Drickey, Darrell James ; Hauptman, J.M. ; et al.
Phys.Rev.Lett. 39 (1977) 1176-1179, 1977.
Inspire Record 123313 DOI 10.17182/hepdata.20975

We have measured the electromagnetic form factor of the charged pion by direct scattering of 100-GeV/c π− from stationary electrons in a liquid-hydrogen target at Fermilab. The deviations from the pointlike pion-scattering cross section may be characterized by a root-mean-square charge radius for the pion of 〈rπ2〉12=0.56±0.04 F.

1 data table

No description provided.


Upper Limits of the Proton Magnetic Form-factor in the Timelike Region From $\bar{p} p \to e^+ e^-$ at the {CERN} {ISR}

The Annecy(LAPP)-CERN-Genoa-Lyon-Oslo-Rome-Strasbourg-Turin collaboration Baglin, C. ; Baird, S. ; Bassompierre, G. ; et al.
Phys.Lett.B 163 (1985) 400-403, 1985.
Inspire Record 218159 DOI 10.17182/hepdata.49639

From the measurement of e + e - pairs from the reaction p̄p→e + e - at the CERN-ISR, using an antiproton beam and a hydrogen jet target, we derived upper limits for the proton magnetic form factor in the time-like region at Q 2 ⋍8.9( GeV c ) 2 and Q 2 ⋍12.5( GeV c ) 2 .

1 data table

No description provided.


A Measurement of the pi0, eta and eta-prime electromagnetic form-factors

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Field, J.H. ; et al.
Z.Phys.C 49 (1991) 401-410, 1991.
Inspire Record 299282 DOI 10.17182/hepdata.45172

We present measurement of the π0γ*γ, ηγ*γ and η′γ*γ form factors. The π0-form factor is for the first time observed in the space-like region. The transition form factor of the η-meson is determined from its decay modes π+π−π0, π+π−γ and the neutral decay mode γγ. The decay of the η′ is observed in the decay channels ργ, ηπ+π− with η→γγ and in the four charged prong final state stemming from ηπ+π− with the η decaying into π+π−(π0/γ). All form factors agree well with a simple ρ-pole predicted by the vector meson dominance model and also with the QCD inspired Brodsky-Lepage model.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Analysis of the Cabibbo suppressed decay D0 --> pi- l+ nu.

The E687 collaboration Frabetti, P.L. ; Cheung, H.W.K. ; Cumalat, John P. ; et al.
Phys.Lett.B 382 (1996) 312-322, 1996.
Inspire Record 419904 DOI 10.17182/hepdata.42285

Results for the Cabibbo suppressed semileptonic decays D 0 → π − e + ν and D 0 → π − μ + ν (charge conjugates are implied) are reported by Fermilab photoproduction experiment E687. We find 45.4 ± 13.3 events in the electron mode and 45.6 ± 11.8 in the muon mode. The relative branching ratio BR (D 0 →π − l + v) BR (D 0 →K − l + v) for the combined sample is measured to be 0.101 ± 0.020 (stat.) ± 0.003 (syst.) 14 .

1 data table

CONST(C=V-CD and CONST(C=V-CS) are the Cabibbo-Kobayashi-Maskawa matrix elemets.


Measurement of the magnetic form factor of the neutron

Markowitz, P. ; Finn, J.M. ; Anderson, B.D. ; et al.
Phys.Rev.C 48 (1993) R5-R9, 1993.
Inspire Record 363009 DOI 10.17182/hepdata.26000

The H2(e,e’n)1H quasielastic cross section was measured at Q2 values of 0.109, 0.176, and 0.255 (GeV/c)2. The neutron detection efficiency was determined by the associated particle technique with the H2(γ,pn) reaction for each of the three neutron kinetic energies. These H2(e,e’n) measurements of the coincidence cross sections are the first at low Q2. The cross sections are sensitive primarily to the neutron magnetic form factor GMn at these kinematics. The extracted GMn values have smaller uncertainties than previous data and are consistent with the dipole parametrization at the two higher momentum transfers; at the lowest momentum transfer, the value of GMn is ∼10% higher than the dipole value.

1 data table

No description provided.


Measurement of the neutron magnetic form-factor

Bruins, E.E.W. ; Bauer, T.S. ; den Bok, H.W. ; et al.
Phys.Rev.Lett. 75 (1995) 21-24, 1995.
Inspire Record 404379 DOI 10.17182/hepdata.19641

The ratio of neutron and proton yields at quasifree kinematics was measured for the reactions 2H(e,e′n) and 2H(e,e′p) at momentum transfers Q2=0.125, 0.255, 0.417, and 0.605(GeV/c)2, detecting the neutron and the proton simultaneously in the same scintillator array. The neutron detection efficiency was measured in situ with the 1H(γ,π+)n reaction. From this the ratio R of 2H(e,e′n) and 2H(e,e′p) cross sections was determined and used to extract the neutron magnetic form factor GMn in a model insensitive approach, resulting in an inaccuracy between 2.1% and 3.3% in GMn.

1 data table

Formfactor in nuclear magnetons.


Measurements of elastic electron - proton scattering at large momentum transfer

Sill, A.F. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 48 (1993) 29-55, 1993.
Inspire Record 341324 DOI 10.17182/hepdata.22584

Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accelerator Center. The data span six orders of magnitude in cross section. Combinded statistical and systematic uncertainties in the cross section measurements ranged from 3.6% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2) and Dirac form factor F1p(Q2) by using form factor scaling. The logarithmic falloff of Q4F1p expected from leading twist predictions of perturbative quantum chromodynamics is consistent with the new data at high Q2. Some nonperturbative and hybrid calculations also agree with our results.

2 data tables

No description provided.

Formfactor scaling assumes (Ge=Gm/mu).


A Measurement of the form-factors of light pseudoscalar mesons at a large momentum transfer

The CLEO collaboration Savinov, Vladimir ;
203-208, 1995.
Inspire Record 397179 DOI 10.17182/hepdata.18789

Using the CLEO-II detector, we have studied the exclusive two-photon production of the light pseudoscalar mesons in a single tagged mode. We report on a preliminary measurement of the $\pi~0$, $\eta$ and $\eta~{\prime}$ electromagnetic form factors in the $Q~2$ region from 2 ${\rm (GeV/c)}~2$ to 20 ${\rm (GeV/c)}~2$.}

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the Neutron Magnetic Form-factor in the $D (e, e^\prime) N P$ Reaction for Momentum Transfers 0.48-{GeV}$^2 \le Q^2 \le$ 0.83-{GeV}$^2$

Esaulov, A.S. ; Rekalo, A.P. ; Rekalo, M.P. ; et al.
Sov.J.Nucl.Phys. 45 (1987) 258-262, 1987.
Inspire Record 250500 DOI 10.17182/hepdata.2500

None

7 data tables

REID POTENTIAL AND SPECIAL PARAMETRIZATION FOR ELECTRIC FORMFACTOR OF NEUTRON HAVE BEEN USED.

REID POTENTIAL AND ELECTRIC FORMFACTOR OF NEUTRON EQUAL 0 HAVE BEEN USED.

PARIS POTENTIAL AND SPECIAL PARAMETRIZATION FOR ELECTRIC FORMFACTOR OF NEUTRON HAVE BEEN USED.

More…

A Measurement of the Electromagnetic Size of the Pion from Direct Elastic Pion Scattering Data at 50-GeV/c

Adylov, G.T. ; Aliev, F.K. ; Bardin, D.Yu. ; et al.
Nucl.Phys.B 128 (1977) 461-505, 1977.
Inspire Record 126055 DOI 10.17182/hepdata.35248

We report the results of a pion-electron scattering experiment to measure the charge radius of the pion. The experiment was performed in a 50 GeV/ c negative, unseparated beam at the IHEP accelerator, Serpukhov, and has been briefly reported in an earlier publication [1]. A magnetic spectrometer instrumented with wire spark chambers was used to record the incident pion trajectory and the angles and momenta of the scattered particles. Events are reconstructed by detailed trackfinding programs, and a set of kinematic and geometric cuts define the elastic sample. Electrons are identified both by kinematic criteria and pulse height information from total absorption lead glass Čerenkov counters. The final elastic sample consisted of 40 000 πe events in the region of four-momentum transfer squared 0.013 (GeV/ c ) 2 ⩽ q 2 ⩽ 0.036 (GeV/ c ) 2 . A full error matrix fit to the form factors of the pion gave the r.m.s. charge radius of the pion: 〈r π 2 〉 1 2 = (0.78 −0.10 +0.09 ) fm .

23 data tables

Axis error includes +- 0.7/0.7 contribution (DUE TO ACCIDENTAL ANTI-COINCIDENCES).

No description provided.

No description provided.

More…

Backward electron-deuteron scattering below 280 mev

Ganichot, D. ; Grossetete, B. ; Isabelle, D.B. ;
Nucl.Phys.A 178 (1972) 545-562, 1972.
Inspire Record 75366 DOI 10.17182/hepdata.8775

We measured the elastic and inelastic scattering of electrons on deuterium at 180° for four incident energies (70, 140, 210 and 280 MeV). The data were analysed with a technique allowing an accurate comparison between experiment and theory. We observed a good agreement for the inelastic data with the expected cross section, using the presently available models and nucleon form factors. The experimental elastic cross section is systematically larger than the predicted cross sections.

16 data tables

No description provided.

No description provided.

No description provided.

More…

Electromagnetic Form-Factors of the Proton at Low Four-Momentum Transfer

Borkowski, F. ; Peuser, P. ; Simon, G.G. ; et al.
Nucl.Phys.B 93 (1975) 461-478, 1975.
Inspire Record 850 DOI 10.17182/hepdata.31992

The 300 MeV electron linear accelerator of Mainz has been used to measure the angular dependence of the electron-proton elastic scattering cross sections at seven different energies for squared four-momentum transfers between 0.13 and 4.7 fm −2 . The proton form factors have been extracted from the cross sections by means of Rosenbluth plots and by fitting parametrized analytical functions directly to the cross sections. The best fit is compared to the data of other laboratories. The previously reported deviations from the dipole fit have been confirmed. From the form factors at q 2 <0.9 fm 2 the proton r.m.s. radius has been determined. A determination of the spectral function of the nucleon isovector form factor G E V in the time-like is obtained using a realistic ϱ resonance.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Some Recent Measurements of Proton Form Factors

Albrecht, W. ; Behrend, H.-J. ; Dorner, H. ; et al.
Phys.Rev.Lett. 18 (1967) 1014-1015, 1967.
Inspire Record 52298 DOI 10.17182/hepdata.21769

None

6 data tables

No description provided.

No description provided.

No description provided.

More…